ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2025 ANS Winter Conference & Expo
November 9–12, 2025
Washington, DC|Washington Hilton
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Sep 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
October 2025
Nuclear Technology
September 2025
Fusion Science and Technology
Latest News
NNSA awards BWXT $1.5B defense fuels contract
The Department of Energy’s National Nuclear Security Administration has awarded BWX Technologies a contract valued at $1.5 billion to build a Domestic Uranium Enrichment Centrifuge Experiment (DUECE) pilot plant in Tennessee in support of the administration’s efforts to build out a domestic supply of unobligated enriched uranium for defense-related nuclear fuel.
Kenichi Yoshioka, Mitsuaki Yamaoka, Kouji Hiraiwa, Takanori Kitada
Nuclear Science and Engineering | Volume 195 | Number 1 | January 2021 | Pages 101-117
Technical Note | doi.org/10.1080/00295639.2020.1788847
Articles are hosted by Taylor and Francis Online.
The void reactivity of a fuel assembly with a streaming channel was measured in a simulated light water reactor critical lattice. The void reactivity was defined as the difference of reactivity ρ between different void conditions. Stainless steel and Zircaloy are candidates for the streaming channel material. Aluminum was used in this measurement because it is inexpensive and its absorption cross section is similar to that of Zircaloy. Two types of streaming channels were used: one made of aluminum and the other made of stainless steel. The two streaming channels were compared in terms of the difference in void reactivity. Measured values were calculated using a continuous-energy Monte Carlo code, MCNP6.1, with the JENDL-4.0 and ENDF/B-VIII.0 nuclear data libraries. The measured values and the calculated values agree within an error range of approximately 10% for the aluminum streaming channel and approximately 20% for the stainless steel streaming channel. The streaming effect of reactivity was deduced from the changes of migration area and buckling, which were measured using the water-height coefficient of reactivity and the axial fission-rate distribution.