ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
December 2025
Nuclear Technology
Fusion Science and Technology
November 2025
Latest News
Modernizing I&C for operations and maintenance, one phase at a time
The two reactors at Dominion Energy’s Surry plant are among the oldest in the U.S. nuclear fleet. Yet when the plant celebrated its 50th anniversary in 2023, staff could raise a toast to the future. Surry was one of the first plants to file a subsequent license renewal (SLR) application, and in May 2021, it became official: the plant was licensed to operate for a full 80 years, extending its reactors’ lifespans into 2052 and 2053.
Yuxuan Liu, Kyle Vaughn, Brendan Kochunas, Thomas Downar
Nuclear Science and Engineering | Volume 195 | Number 1 | January 2021 | Pages 50-68
Technical Paper | doi.org/10.1080/00295639.2020.1780853
Articles are hosted by Taylor and Francis Online.
Over the years, significant validation work for the neutronics code MPACT has been performed against zero-power critical benchmarks and measured data from operating nuclear power plants. Among all of these efforts, however, validation of the pin-resolved capability in MPACT has been limited by the public availability of experimental data and to a lesser degree availability of measurement techniques and facilities that provide such detailed data. Recently, new measurement results to experimentally determine the reaction rate along the pellet radius from the IPEN/MB-01 research reactor facility (IPEN) have been published as a benchmark in the International Reactor Physics Experiment Project handbook. In this paper, we examine MPACT simulation results for several IPEN benchmark experiments with emphasis on the intrapin reaction rate measurements. The IPEN critical experiments with variations in system temperature and gadolinium loadings are modeled first with the latest MPACT cross-section library and linear source (LS) method of characteristics (MOC) capability. The MPACT results of two-dimensional (2-D) models with axial buckling are within 160 pcm from the experimental eigenvalues using the flat source MOC. Using the LS MOC, the errors are no more than 70 pcm, and the temperature trend of various cases is smaller. The MPACT three-dimensional models with LS show slightly worse comparisons than the 2-D models, which may be due to the isotropic transverse leakage and homogenized cross-section approximations of the 2-D/one-dimensional solver. For the reaction rate validation, MPACT produces intrapin reaction rate results within 2σ of the experiment and shows excellent agreement with the Monte Carlo solution. The observed discrepancies between the simulated results and experiment for the fission rate measurements are discussed. The kinetics parameters measured in another IPEN experiment are also compared with MPACT simulations using different kinetics data sources. According to the validation results, JENDL-4.0 and Santamarina et al.’s data are recommended for MPACT transient calculations.