ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
December 2025
Nuclear Technology
Fusion Science and Technology
November 2025
Latest News
Modernizing I&C for operations and maintenance, one phase at a time
The two reactors at Dominion Energy’s Surry plant are among the oldest in the U.S. nuclear fleet. Yet when the plant celebrated its 50th anniversary in 2023, staff could raise a toast to the future. Surry was one of the first plants to file a subsequent license renewal (SLR) application, and in May 2021, it became official: the plant was licensed to operate for a full 80 years, extending its reactors’ lifespans into 2052 and 2053.
Masato Yamamoto, Tomohiro Endo, Akio Yamamoto
Nuclear Science and Engineering | Volume 195 | Number 1 | January 2021 | Pages 33-49
Technical Paper | doi.org/10.1080/00295639.2020.1781482
Articles are hosted by Taylor and Francis Online.
Compression of cross-section data used for high-resolution core analysis is performed using a dimensionality reduction technique based on the singular value decomposition (SVD) and low-rank approximation. The size of cross-section data can be a significant issue in high-resolution core analysis using detailed energy and spatial resolutions. This study addresses this issue focusing on the similarity of multigroup cross sections among different spatial regions. A data compression method using the SVD and low-rank approximation is applied for the multigroup microscopic cross sections of heterogeneous material regions obtained by a lattice physics calculation with burnup and branch calculations. Weighting by nuclide number densities and neutron spectra is considered to improve the efficiency of compression for cross sections. Single-assembly transport calculations with the method of characteristics are carried out using the original cross sections and the reconstructed cross sections after data compression. The accuracy of data compression for cross sections is evaluated by comparing the multiplication factor and multigroup scalar fluxes. The results indicate that the present data compression for microscopic cross sections can reduce approximately 99.7% of the original cross-section data size under the present calculation condition.