ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Isotopes & Radiation
Members are devoted to applying nuclear science and engineering technologies involving isotopes, radiation applications, and associated equipment in scientific research, development, and industrial processes. Their interests lie primarily in education, industrial uses, biology, medicine, and health physics. Division committees include Analytical Applications of Isotopes and Radiation, Biology and Medicine, Radiation Applications, Radiation Sources and Detection, and Thermal Power Sources.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
May 2025
Fusion Science and Technology
Latest News
Sam Altman steps down as Oklo board chair
Advanced nuclear company Oklo Inc. has new leadership for its board of directors as billionaire Sam Altman is stepping down from the position he has held since 2015. The move is meant to open new partnership opportunities with OpenAI, where Altman is CEO, and other artificial intelligence companies.
Masato Yamamoto, Tomohiro Endo, Akio Yamamoto
Nuclear Science and Engineering | Volume 195 | Number 1 | January 2021 | Pages 33-49
Technical Paper | doi.org/10.1080/00295639.2020.1781482
Articles are hosted by Taylor and Francis Online.
Compression of cross-section data used for high-resolution core analysis is performed using a dimensionality reduction technique based on the singular value decomposition (SVD) and low-rank approximation. The size of cross-section data can be a significant issue in high-resolution core analysis using detailed energy and spatial resolutions. This study addresses this issue focusing on the similarity of multigroup cross sections among different spatial regions. A data compression method using the SVD and low-rank approximation is applied for the multigroup microscopic cross sections of heterogeneous material regions obtained by a lattice physics calculation with burnup and branch calculations. Weighting by nuclide number densities and neutron spectra is considered to improve the efficiency of compression for cross sections. Single-assembly transport calculations with the method of characteristics are carried out using the original cross sections and the reconstructed cross sections after data compression. The accuracy of data compression for cross sections is evaluated by comparing the multiplication factor and multigroup scalar fluxes. The results indicate that the present data compression for microscopic cross sections can reduce approximately 99.7% of the original cross-section data size under the present calculation condition.