ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jul 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
September 2025
Nuclear Technology
August 2025
Fusion Science and Technology
Latest News
Deep Space: The new frontier of radiation controls
In commercial nuclear power, there has always been a deliberate tension between the regulator and the utility owner. The regulator fundamentally exists to protect the worker, and the utility, to make a profit. It is a win-win balance.
From the U.S. nuclear industry has emerged a brilliantly successful occupational nuclear safety record—largely the result of an ALARA (as low as reasonably achievable) process that has driven exposure rates down to what only a decade ago would have been considered unthinkable. In the U.S. nuclear industry, the system has accomplished an excellent, nearly seamless process that succeeds to the benefit of both employee and utility owner.
Chris W. Chapman, Goran Arbanas, Alexander I. Kolesnikov, Luiz Leal, Yaron Danon, Carl Wendorff, Kemal Ramić, Li Liu, Farzad Rahnema
Nuclear Science and Engineering | Volume 195 | Number 1 | January 2021 | Pages 13-32
Technical Paper | doi.org/10.1080/00295639.2020.1792716
Articles are hosted by Taylor and Francis Online.
This paper details and implements a framework for evaluating thermal neutron scattering cross sections that provide data and covariance data for hydrogen in light water. This methodology involves perturbing model parameters of molecular dynamics potentials and fitting the simulation results to experimental data. The framework is general and can be applied to any material or simulation method. The fit is made using the Unified Monte Carlo method to experimentally measure double-differential scattering cross sections of light water at the Spallation Neutron Source at Oak Ridge National Laboratory. Mean values and covariance data were generated for model parameters, phonon density of states, double-differential cross sections, and total scattering cross sections. These posterior parameter values were very similar to their prior values with a maximum relative error of 0.54%. This falls within in the Unified Monte Carlo–calculated uncertainties on the order of 2.7%. Additionally, posterior double-differential cross sections agree favorably with ENDF/B-VIII.0 cross sections. The new thermal scattering law was tested by comparing it against benchmarks from the International Criticality Safety Benchmark Evaluation Project Handbook, which showed a slight improvement over the ENDF/B-VIII.0 library. Additionally, the covariance matrix of the phonon density of states was validated to confirm that the spread of keff from the density of states used to generate the covariance matrix was similar to the spread of keff from the density of states of the sampled covariance matrix.