ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Fuel Cycle & Waste Management
Devoted to all aspects of the nuclear fuel cycle including waste management, worldwide. Division specific areas of interest and involvement include uranium conversion and enrichment; fuel fabrication, management (in-core and ex-core) and recycle; transportation; safeguards; high-level, low-level and mixed waste management and disposal; public policy and program management; decontamination and decommissioning environmental restoration; and excess weapons materials disposition.
Meeting Spotlight
2025 ANS Annual Conference
June 15–18, 2025
Chicago, IL|Chicago Marriott Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
May 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
July 2025
Nuclear Technology
June 2025
Fusion Science and Technology
Latest News
BREAKING NEWS: Trump issues executive orders to overhaul nuclear industry
The Trump administration issued four executive orders today aimed at boosting domestic nuclear deployment ahead of significant growth in projected energy demand in the coming decades.
During a live signing in the Oval Office, President Donald Trump called nuclear “a hot industry,” adding, “It’s a brilliant industry. [But] you’ve got to do it right. It’s become very safe and environmental.”
Chris W. Chapman, Goran Arbanas, Alexander I. Kolesnikov, Luiz Leal, Yaron Danon, Carl Wendorff, Kemal Ramić, Li Liu, Farzad Rahnema
Nuclear Science and Engineering | Volume 195 | Number 1 | January 2021 | Pages 13-32
Technical Paper | doi.org/10.1080/00295639.2020.1792716
Articles are hosted by Taylor and Francis Online.
This paper details and implements a framework for evaluating thermal neutron scattering cross sections that provide data and covariance data for hydrogen in light water. This methodology involves perturbing model parameters of molecular dynamics potentials and fitting the simulation results to experimental data. The framework is general and can be applied to any material or simulation method. The fit is made using the Unified Monte Carlo method to experimentally measure double-differential scattering cross sections of light water at the Spallation Neutron Source at Oak Ridge National Laboratory. Mean values and covariance data were generated for model parameters, phonon density of states, double-differential cross sections, and total scattering cross sections. These posterior parameter values were very similar to their prior values with a maximum relative error of 0.54%. This falls within in the Unified Monte Carlo–calculated uncertainties on the order of 2.7%. Additionally, posterior double-differential cross sections agree favorably with ENDF/B-VIII.0 cross sections. The new thermal scattering law was tested by comparing it against benchmarks from the International Criticality Safety Benchmark Evaluation Project Handbook, which showed a slight improvement over the ENDF/B-VIII.0 library. Additionally, the covariance matrix of the phonon density of states was validated to confirm that the spread of keff from the density of states used to generate the covariance matrix was similar to the spread of keff from the density of states of the sampled covariance matrix.