ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Accelerator Applications
The division was organized to promote the advancement of knowledge of the use of particle accelerator technologies for nuclear and other applications. It focuses on production of neutrons and other particles, utilization of these particles for scientific or industrial purposes, such as the production or destruction of radionuclides significant to energy, medicine, defense or other endeavors, as well as imaging and diagnostics.
Meeting Spotlight
2027 ANS Winter Conference and Expo
October 31–November 4, 2027
Washington, DC|The Westin Washington, DC Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jun 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
August 2025
Nuclear Technology
July 2025
Fusion Science and Technology
Latest News
Supreme Court rules against Texas in interim storage case
The Supreme Court voted 6–3 against Texas and a group of landowners today in a case involving the Nuclear Regulatory Commission’s licensing of a consolidated interim storage facility for spent nuclear fuel, reversing a decision by the 5th Circuit Court of Appeals to grant the state and landowners Fasken Land and Minerals (Fasken) standing to challenge the license.
Dean Wang
Nuclear Science and Engineering | Volume 195 | Number 1 | January 2021 | Pages 1-12
Technical Paper | doi.org/10.1080/00295639.2020.1785190
Articles are hosted by Taylor and Francis Online.
We present the new iterative method lpCMFD-SOR, which combines the linear prolongation coarse-mesh finite difference (lpCMFD) scheme with the method of successive overrelaxation (SOR) for neutron transport source iteration (SI). The lpCMFD method is the latest coarse-mesh finite difference (CMFD)–type acceleration scheme and is unconditionally stable and more effective than the standard CMFD method. The SOR method is a variant of the Gauss-Seidel method for solving a linear system of equations, resulting in faster convergence. The idea is to update the scattering source with overrelaxation to speed up the coupled transport-diffusion SI. Fourier analysis shows that the lpCMFD-SOR method converges for a relaxation parameter in the range of . It becomes less effective when underrelaxed (i.e., ) and increasingly more effective as increases above 1 until reaching the optimal overrelaxation value, which is, however, problem dependent. The optimal overrelaxation parameter increases with both the scattering ratio and the optical thickness of the problem. Numerical experiments have confirmed the Fourier analysis results. In general, the SOR method can further enhance the convergence rate of the lpCMFD method by more than 40% for neutron transport problems.