ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2025 ANS Winter Conference & Expo
November 9–12, 2025
Washington, DC|Washington Hilton
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Oct 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
November 2025
Nuclear Technology
October 2025
Fusion Science and Technology
Latest News
Senate EPW Committee to hold Nieh nomination hearing
Nieh
The Senate Environment and Public Works Committee will hold a nomination hearing Wednesday for Ho Nieh, President Donald Trump’s nominee to serve as commission at the Nuclear Regulatory Commission.
Trump nominated Nieh on July 30 to serve as NRC commissioner the remainder of a term that will expire June 30, 2029, as Nuclear NewsWire previously reported.
Nieh has been vice president of regulatory affairs at Southern Nuclear since 2021, though since June 2024 he has been at the Institute of Nuclear Power Operations as a loaned executive.
A return to the NRC: If confirmed by the Senate, Nieh would be returning to the NRC after three previous stints totaling nearly 20 years.
Dean Wang
Nuclear Science and Engineering | Volume 195 | Number 1 | January 2021 | Pages 1-12
Technical Paper | doi.org/10.1080/00295639.2020.1785190
Articles are hosted by Taylor and Francis Online.
We present the new iterative method lpCMFD-SOR, which combines the linear prolongation coarse-mesh finite difference (lpCMFD) scheme with the method of successive overrelaxation (SOR) for neutron transport source iteration (SI). The lpCMFD method is the latest coarse-mesh finite difference (CMFD)–type acceleration scheme and is unconditionally stable and more effective than the standard CMFD method. The SOR method is a variant of the Gauss-Seidel method for solving a linear system of equations, resulting in faster convergence. The idea is to update the scattering source with overrelaxation to speed up the coupled transport-diffusion SI. Fourier analysis shows that the lpCMFD-SOR method converges for a relaxation parameter in the range of . It becomes less effective when underrelaxed (i.e., ) and increasingly more effective as increases above 1 until reaching the optimal overrelaxation value, which is, however, problem dependent. The optimal overrelaxation parameter increases with both the scattering ratio and the optical thickness of the problem. Numerical experiments have confirmed the Fourier analysis results. In general, the SOR method can further enhance the convergence rate of the lpCMFD method by more than 40% for neutron transport problems.