ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Reactor Physics
The division's objectives are to promote the advancement of knowledge and understanding of the fundamental physical phenomena characterizing nuclear reactors and other nuclear systems. The division encourages research and disseminates information through meetings and publications. Areas of technical interest include nuclear data, particle interactions and transport, reactor and nuclear systems analysis, methods, design, validation and operating experience and standards. The Wigner Award heads the awards program.
Meeting Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jun 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
August 2025
Nuclear Technology
July 2025
Fusion Science and Technology
Latest News
NRC cuts fees by 50 percent for advanced reactor applicants
The Nuclear Regulatory Commission has announced it has amended regulations for the licensing, inspection, special projects, and annual fees it will charge applicants and licensees for fiscal year 2025.
Hoang Hai Nguyen, Jun Nishiyama, Toru Obara
Nuclear Science and Engineering | Volume 194 | Number 12 | December 2020 | Pages 1128-1142
Technical Paper | doi.org/10.1080/00295639.2020.1775433
Articles are hosted by Taylor and Francis Online.
The CANDLE (Constant Axial shape of Neutron flux, nuclide densities and power shape During Life of Energy production) reactor concept was proposed to overcome the disadvantages of current reactor technologies. In this study, a Monte Carlo–based procedure is developed for quantitative comparison of burnup performance and neutronic characteristics between lead bismuth eutectic (LBE)–cooled and sodium-cooled CANDLE reactors to demonstrate the possibility of using sodium coolant in a small CANDLE burning reactor. In this procedure, a neutron transport equation is solved using the MVP code with the JENDL-4.0 library, and the burnup calculation is solved using the MVP-BURN code with the detailed burnup chain. To simulate the fuel-shuffling process, an auxiliary code was developed using Python. The results show that for the same fuel pin design and core volume, changing the coolant from LBE to sodium reduced the keff by 2.3% and the average discharge burnup by 15.6%, due to the softer neutron spectrum and larger neutron leakage fraction. It would be necessary to increase the fuel volume and core radius approximately 38% and 17%, respectively, for criticality in a sodium-cooled CANDLE core.