ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
December 2025
Nuclear Technology
Fusion Science and Technology
November 2025
Latest News
Project Pele progress: BWXT delivers fuel to INL
This week, BWX Technologies, alongside Idaho National Laboratory and the Department of Defense’s Strategic Capabilities Office, announced the arrival of a full core of TRISO fuel at INL’s Transient Reactor Test Facility.
Cheol Ho Pyeon, Masao Yamanaka, Tomohiro Endo, Go Chiba, Willem F. G Van Rooijen, Kenichi Watanabe
Nuclear Science and Engineering | Volume 194 | Number 12 | December 2020 | Pages 1116-1127
Technical Paper | doi.org/10.1080/00295639.2020.1774230
Articles are hosted by Taylor and Francis Online.
At the Kyoto University Critical Assembly experiments on kinetics parameters are carried out at near-critical configurations, supercritical and subcritical states, in the thermal neutron spectrum made with a highly enriched uranium fuel. The main calculated kinetics parameters, the effective delayed neutron fraction (βeff) and the neutron generation time (Ʌ), are used effectively for the estimation of experimental parameters, and the accuracy of experiments on prompt neutron decay constant (α) and subcriticality (ρ$) in dollar units is attained by the numerical results of βeff and Ʌ. Furthermore, the value of βeff/Ʌ is experimentally deduced with the use of the experimental results of α and ρ$, ranging between 250 and −80 pcm. Thus, the experimentally deduced values of βeff/Ʌ that reveal good accuracy through a comparison with those by the MCNP6.1 calculations with JENDL-4.0 are then taken as an index of Ʌ by introducing an acceptable assumption of βeff at near-critical configurations. From the results of experimental and numerical analyses, the experimental value of βeff/Ʌ is important for the validation of Ʌ since kinetics parameters are successfully obtained from the clean cores of near-critical configurations in the thermal neutron spectrum.