ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Aug 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
September 2025
Nuclear Technology
Fusion Science and Technology
August 2025
Latest News
House E&C members question the DOE
As work progresses on the Department of Energy’s Nuclear Reactor Pilot Program, which will progress through DOE authorization rather than Nuclear Regulatory Commission licensing, three members of the House Committee on Energy and Commerce have sent a critical letter to Energy Secretary Chris Wright.
The letter demands “information about the DOE and its employees’ dealings with the NRC and its staff” and expresses concern that DOE staff has “broken the firewall” between the departments.
Guillaume Giudicelli, Kord Smith, Benoit Forget
Nuclear Science and Engineering | Volume 194 | Number 11 | November 2020 | Pages 1044-1055
Technical Paper | doi.org/10.1080/00295639.2020.1765606
Articles are hosted by Taylor and Francis Online.
A recent hybrid stochastic-deterministic calculation scheme using Monte Carlo–tallied group cross sections in a deterministic solver uses the best of both worlds for accurate and fast reactor agnostic transport simulations. However, neglecting the angular dependence of group cross sections induces large self-shielding errors in resonance groups, causing a large reactivity bias up to 300 pcm in light water reactors. To recover this error, we introduce a two-scale assembly transport calculation scheme: cross sections are tallied at the assembly level, while equivalence parameters are computed in a two-dimensional (2-D) pin cell system. We validate a novel equivalence method based on jump conditions on angular fluxes by comparing to the well-established superhomogenization method for 2-D and three-dimensional (3-D) linear source method of characteristics calculations. Test cases include 2-D and 3-D assemblies of two different enrichments with homogeneous and discretized cross-section discretizations. The linear source approximation enables using coarse source-region discretization for these hot zero-power problems. Both equivalence techniques perform similarly, recover the reactivity bias, and achieve near preservation of reaction rates, supporting this multiscale approach to equivalence.