ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Feb 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
March 2026
Nuclear Technology
February 2026
Fusion Science and Technology
January 2026
Latest News
Fusion energy: Progress, partnerships, and the path to deployment
Over the past decade, fusion energy has moved decisively from scientific aspiration toward a credible pathway to a new energy technology. Thanks to long-term federal support, we have significantly advanced our fundamental understanding of plasma physics—the behavior of the superheated gases at the heart of fusion devices. This knowledge will enable the creation and control of fusion fuel under conditions required for future power plants. Our progress is exemplified by breakthroughs at the National Ignition Facility and the Joint European Torus.
Sterling M. Harper, Paul K. Romano, Benoit Forget, Kord S. Smith
Nuclear Science and Engineering | Volume 194 | Number 11 | November 2020 | Pages 1009-1015
Technical Paper | doi.org/10.1080/00295639.2020.1719765
Articles are hosted by Taylor and Francis Online.
Monte Carlo (MC) transport codes offer high-fidelity modeling of particle transport physics, but their high computational cost makes them impractical for many applications. For some applications such as multiphysics and depletion that use finely discretized geometries, a large portion of this computational cost is attributable to ray tracing. Neighbor lists are a well-known method for accelerating ray-tracing calculations in a MC code, but despite their prevalence, little work has been published on the details of their implementation. The fine details can have a significant impact on performance, particularly when using shared-memory parallelism. This paper addresses these details of implementation with a discussion of different neighbor list schemes and their impact on software runtime.
Performance tests were run by using OpenMC on a pin-cell problem discretized with up to 200 axial regions. The results demonstrate that switching from surface-based to cell-based neighbor lists leads to a 10 faster calculation rate for the most fine discretization. Furthermore, using a threadsafe shared-memory data structure results in a 20% faster calculation rate versus simple threadprivate neighbor lists. Results here show that a data structure that is contiguous in memory improves performance by only 1% to 2% over noncontiguous linked lists.