ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Operations & Power
Members focus on the dissemination of knowledge and information in the area of power reactors with particular application to the production of electric power and process heat. The division sponsors meetings on the coverage of applied nuclear science and engineering as related to power plants, non-power reactors, and other nuclear facilities. It encourages and assists with the dissemination of knowledge pertinent to the safe and efficient operation of nuclear facilities through professional staff development, information exchange, and supporting the generation of viable solutions to current issues.
Meeting Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jun 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
August 2025
Nuclear Technology
July 2025
Fusion Science and Technology
Latest News
NRC cuts fees by 50 percent for advanced reactor applicants
The Nuclear Regulatory Commission has announced it has amended regulations for the licensing, inspection, special projects, and annual fees it will charge applicants and licensees for fiscal year 2025.
Sterling M. Harper, Paul K. Romano, Benoit Forget, Kord S. Smith
Nuclear Science and Engineering | Volume 194 | Number 11 | November 2020 | Pages 1009-1015
Technical Paper | doi.org/10.1080/00295639.2020.1719765
Articles are hosted by Taylor and Francis Online.
Monte Carlo (MC) transport codes offer high-fidelity modeling of particle transport physics, but their high computational cost makes them impractical for many applications. For some applications such as multiphysics and depletion that use finely discretized geometries, a large portion of this computational cost is attributable to ray tracing. Neighbor lists are a well-known method for accelerating ray-tracing calculations in a MC code, but despite their prevalence, little work has been published on the details of their implementation. The fine details can have a significant impact on performance, particularly when using shared-memory parallelism. This paper addresses these details of implementation with a discussion of different neighbor list schemes and their impact on software runtime.
Performance tests were run by using OpenMC on a pin-cell problem discretized with up to 200 axial regions. The results demonstrate that switching from surface-based to cell-based neighbor lists leads to a 10 faster calculation rate for the most fine discretization. Furthermore, using a threadsafe shared-memory data structure results in a 20% faster calculation rate versus simple threadprivate neighbor lists. Results here show that a data structure that is contiguous in memory improves performance by only 1% to 2% over noncontiguous linked lists.