ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Nov 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
December 2025
Nuclear Technology
November 2025
Fusion Science and Technology
Latest News
X-energy begins irradiation testing at INL
Advanced reactor and fuel developer X-energy has officially begun confirmatory irradiation testing at Idaho National Laboratory on its TRISO-X fuel. The testing, which is taking place over the course of the next 13 months, will evaluate the fuel across a variety of operating scenarios and—if all goes according to plan—will be instrumental in qualifying it for commercial use.
Martin Frank, Jonas Kusch, Thomas Camminady, Cory D. Hauck
Nuclear Science and Engineering | Volume 194 | Number 11 | November 2020 | Pages 971-988
Technical Paper | doi.org/10.1080/00295639.2020.1730665
Articles are hosted by Taylor and Francis Online.
Solving the radiative transfer equation with the discrete ordinates (S) method leads to a nonphysical imprint of the chosen quadrature set on the solution. To mitigate these so-called ray effects, we propose a modification of the S method that we call artificial scattering S (as-S). The method adds an artificial forward-peaked scattering operator that generates angular diffusion to the solution and thereby mitigates ray effects. Similar to artificial viscosity for spatial discretizations, the additional term vanishes as the number of ordinates approaches infinity. Our method allows an efficient implementation of explicit and implicit time integration according to standard S solver technology. For two test cases, we demonstrate a significant reduction of error for the as-S method when compared to the standard S method, both for explicit and implicit computations. Furthermore, we show that a prescribed numerical precision can be reached with less memory due to the reduction in the number of ordinates.