ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Nuclear Criticality Safety
NCSD provides communication among nuclear criticality safety professionals through the development of standards, the evolution of training methods and materials, the presentation of technical data and procedures, and the creation of specialty publications. In these ways, the division furthers the exchange of technical information on nuclear criticality safety with the ultimate goal of promoting the safe handling of fissionable materials outside reactors.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
May 2025
Fusion Science and Technology
Latest News
Sam Altman steps down as Oklo board chair
Advanced nuclear company Oklo Inc. has new leadership for its board of directors as billionaire Sam Altman is stepping down from the position he has held since 2015. The move is meant to open new partnership opportunities with OpenAI, where Altman is CEO, and other artificial intelligence companies.
Thomas A. Brunner, Terry S. Haut, Paul F. Nowak
Nuclear Science and Engineering | Volume 194 | Number 11 | November 2020 | Pages 939-951
Technical Paper | doi.org/10.1080/00295639.2020.1747262
Articles are hosted by Taylor and Francis Online.
We apply a nonlinearly preconditioned, quasi-Newton framework to accelerate the numerical solution of the thermal radiative transfer (TRT) equations. This framework was inspired by the unpublished method that has existed for years in Teton, Lawrence Livermore National Laboratory’s deterministic TRT code. In this paper, we cast this iteration scheme within a formal nonlinear preconditioning framework and compare its performance against other iteration schemes in the framework. With proper choices of iteration controls for the various levels of the solver, we can recover the standard linearized one-step method, a full nonlinear Newton scheme, as well as the method in Teton.
In brief, the nonlinear preconditioning TRT scheme formally eliminates the material temperature equation from the nonlinear system in a nonlinear analog of a Schur complement. This nonlinear elimination step involves solving a decoupled nonlinear equation for each spatial degree of freedom and is therefore inexpensive. By applying a quasi-Newton iteration scheme on the new system, we obtain a three-level iteration scheme that is at least as efficient as commonly used TRT schemes. The new method allows full convergence to the nonlinear backward Euler time-discretized system, increasing accuracy and robustness, while using a similar number of linear iterations as the more common linearized one-step methods Eq. (4).