ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Aug 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
September 2025
Nuclear Technology
Fusion Science and Technology
August 2025
Latest News
House E&C members question the DOE
As work progresses on the Department of Energy’s Nuclear Reactor Pilot Program, which will progress through DOE authorization rather than Nuclear Regulatory Commission licensing, three members of the House Committee on Energy and Commerce have sent a critical letter to Energy Secretary Chris Wright.
The letter demands “information about the DOE and its employees’ dealings with the NRC and its staff” and expresses concern that DOE staff has “broken the firewall” between the departments.
Yunhuang Zhang, Jean C. Ragusa, Jim E. Morel
Nuclear Science and Engineering | Volume 194 | Number 10 | October 2020 | Pages 903-926
Technical Paper | doi.org/10.1080/00295639.2020.1771141
Articles are hosted by Taylor and Francis Online.
The Simplified () approximation is often used to model radiation transport phenomena, but it converges to the true solution of the transport equation only in one-dimensional slab geometry. In all other geometries, it incurs a model error that needs to be quantified. In this paper, we estimate the radiation transport model error due to the approximation and employ transport solutions (with high order) as reference transport solutions. Because the solution does not contain the full angular information of the transport solution, an angular intensity must be reconstructed from the solution in order to compute the model error. We propose two such reconstruction schemes. Model error estimates are given for various quantities of interests, i.e., scalar radiation intensity, radiation flux, and boundary leakage. An adjoint-based approach is proposed to evaluate the model error and is compared against forward and residual techniques. Two-dimensional numerical experiments are presented.