ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jul 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
August 2025
Nuclear Technology
Fusion Science and Technology
July 2025
Latest News
Hash Hashemian: Visionary leadership
As Dr. Hashem M. “Hash” Hashemian prepares to step into his term as President of the American Nuclear Society, he is clear that he wants to make the most of this unique moment.
A groundswell in public approval of nuclear is finding a home in growing governmental support that is backed by a tailwind of technological innovation. “Now is a good time to be in nuclear,” Hashemian said, as he explained the criticality of this moment and what he hoped to accomplish as president.
Nnaemeka Nnamani, Karl Van Bibber, Lee A. Bernstein, Jasmina L. Vujic, Jonathan T. Morrell, Jon C. Batchelder, Mauricio Ayllon
Nuclear Science and Engineering | Volume 194 | Number 10 | October 2020 | Pages 894-902
Technical Paper | doi.org/10.1080/00295639.2020.1769964
Articles are hosted by Taylor and Francis Online.
We report here the results of a measurement of the scattered versus unscattered neutron fluence on polyethylene determined via neutron activation of multiple natural indium foils from a deuterium-deuterium (D-D) neutron generator. The neutrons were produced by the High Flux Neutron Generator (HFNG) at the University of California, Berkeley, a specially designed source to maximize neutron flux on a sample while minimizing the total neutron yield. During the experiment, approximately 108 n/s were produced with the energies at the indium foils ranging from 2.2 to 2.8 MeV. Both the angle-integrated and the partial angle differential results are consistent with the predictions of the Monte Carlo N-Particle Transport (MCNP) code, using ENDF/B-VII.1. This supports shielding calculations in the fast energy region with high-density polyethylene.