ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Nuclear Nonproliferation Policy
The mission of the Nuclear Nonproliferation Policy Division (NNPD) is to promote the peaceful use of nuclear technology while simultaneously preventing the diversion and misuse of nuclear material and technology through appropriate safeguards and security, and promotion of nuclear nonproliferation policies. To achieve this mission, the objectives of the NNPD are to: Promote policy that discourages the proliferation of nuclear technology and material to inappropriate entities. Provide information to ANS members, the technical community at large, opinion leaders, and decision makers to improve their understanding of nuclear nonproliferation issues. Become a recognized technical resource on nuclear nonproliferation, safeguards, and security issues. Serve as the integration and coordination body for nuclear nonproliferation activities for the ANS. Work cooperatively with other ANS divisions to achieve these objective nonproliferation policies.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Feb 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
March 2025
Nuclear Technology
February 2025
Fusion Science and Technology
Latest News
Germany election brings nuclear power back into spotlight
It’s been less than two years since Germany shuttered its three remaining nuclear plants on April 15, 2023—the culmination of a decision reached during the backlash following the Fukushima Daiichi accident in Japan in 2011.
Milan Hanus, Jean C. Ragusa
Nuclear Science and Engineering | Volume 194 | Number 10 | October 2020 | Pages 873-893
Technical Paper | doi.org/10.1080/00295639.2020.1767436
Articles are hosted by Taylor and Francis Online.
This work is motivated by the need to solve realistic problems with complex energy, space, and angle dependence, which requires parallel multigroup transport sweeps combined with efficient acceleration of the thermal upscattering. We present various iterative schemes based on the two-grid (TG) diffusion synthetic acceleration (DSA) method. In its original form, the TG method is used with the Gauss-Seidel iterative scheme over energy groups, which makes it impractical for parallel computation. We therefore formulate a Jacobi-style version. Furthermore, we propose a new scheme that reduces the overall number of transport sweeps by removing the need to fully converge the within-group iterations before the TG step. This becomes possible by adding an additional within-group DSA solve after each transport sweep. Fourier analyses are carried out to ascertain the effectiveness of the proposed scheme, with further corroboration from massively parallel numerical results from practical problem calculations. We discuss several implementation strategies of the new scheme, paying particular attention to the consequences on the overall efficiency of adding additional diffusion solves with a relatively low number of degrees of freedom per process.