ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Jan 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
February 2026
Nuclear Technology
January 2026
Fusion Science and Technology
Latest News
The spark of the Super: Teller–Ulam and the birth of the H-bomb—rivalry, credit, and legacy at 75 years
In early 1951, Los Alamos scientists Edward Teller and Stanislaw Ulam devised a breakthrough that would lead to the hydrogen bomb [1]. Their design gave the United States an initial advantage in the Cold War, though comparable progress was soon achieved independently in the Soviet Union and the United Kingdom.
Milan Hanus, Jean C. Ragusa
Nuclear Science and Engineering | Volume 194 | Number 10 | October 2020 | Pages 873-893
Technical Paper | doi.org/10.1080/00295639.2020.1767436
Articles are hosted by Taylor and Francis Online.
This work is motivated by the need to solve realistic problems with complex energy, space, and angle dependence, which requires parallel multigroup transport sweeps combined with efficient acceleration of the thermal upscattering. We present various iterative schemes based on the two-grid (TG) diffusion synthetic acceleration (DSA) method. In its original form, the TG method is used with the Gauss-Seidel iterative scheme over energy groups, which makes it impractical for parallel computation. We therefore formulate a Jacobi-style version. Furthermore, we propose a new scheme that reduces the overall number of transport sweeps by removing the need to fully converge the within-group iterations before the TG step. This becomes possible by adding an additional within-group DSA solve after each transport sweep. Fourier analyses are carried out to ascertain the effectiveness of the proposed scheme, with further corroboration from massively parallel numerical results from practical problem calculations. We discuss several implementation strategies of the new scheme, paying particular attention to the consequences on the overall efficiency of adding additional diffusion solves with a relatively low number of degrees of freedom per process.