ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Sep 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
September 2025
Nuclear Technology
Fusion Science and Technology
October 2025
Latest News
Nano Nuclear wins Air Force contract for Kronos MMR
New York City–based advanced nuclear technology developer Nano Nuclear Energy has been awarded a Direct-to-Phase II Small Business Innovation Research contract for its Kronos micro modular reactor (MMR) by AFWERX, the innovation and venture arm of the U.S. Air Force. The contract calls for AFWERX, with the 11th Civil Engineering Squadron, to explore the feasibility of deploying the Kronos MMR Energy System at Joint Base Anacostia-Bolling (JBAB) in Washington, D.C.
T. Höhne, D. Lucas
Nuclear Science and Engineering | Volume 194 | Number 10 | October 2020 | Pages 859-872
Technical Paper | doi.org/10.1080/00295639.2020.1764265
Articles are hosted by Taylor and Francis Online.
This technical paper presents an application of the GEneralized TwO Phase flow (GENTOP) model for phase transfer and discusses the submodels used. Boiling of a heated surface under atmospheric conditions is simulated by the multifield computational fluid dynamics (CFD) approach. Subcooled water in a generic pool is heated up first in the near-wall region leading to the generation of small bubbles. Farther away from the bottom wall, larger bubbles are generated by coalescence and evaporation. The CFD simulation is based on the recently developed GENTOP concept. It is a multifield model using the Euler-Euler approach, and it allows the consideration of different local-flow morphologies, including transitions between them. Small steam bubbles are handled as dispersed phases, while the interface of large gas structures is statistically resolved. The multiscale simulation of the transitions from small bubble to larger structures during boiling in a pool is now feasible. However, the GENTOP submodels need a constant improvement and a separate, intensive validation effort using CFD-grade experiments.