ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Reactor Physics
The division's objectives are to promote the advancement of knowledge and understanding of the fundamental physical phenomena characterizing nuclear reactors and other nuclear systems. The division encourages research and disseminates information through meetings and publications. Areas of technical interest include nuclear data, particle interactions and transport, reactor and nuclear systems analysis, methods, design, validation and operating experience and standards. The Wigner Award heads the awards program.
Meeting Spotlight
2025 ANS Annual Conference
June 15–18, 2025
Chicago, IL|Chicago Marriott Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
May 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
July 2025
Nuclear Technology
June 2025
Fusion Science and Technology
Latest News
BREAKING NEWS: Trump issues executive orders to overhaul nuclear industry
The Trump administration issued four executive orders today aimed at boosting domestic nuclear deployment ahead of significant growth in projected energy demand in the coming decades.
During a live signing in the Oval Office, President Donald Trump called nuclear “a hot industry,” adding, “It’s a brilliant industry. [But] you’ve got to do it right. It’s become very safe and environmental.”
Anthony L. Alberti, Todd S. Palmer
Nuclear Science and Engineering | Volume 194 | Number 10 | October 2020 | Pages 837-858
Technical Paper | doi.org/10.1080/00295639.2020.1758482
Articles are hosted by Taylor and Francis Online.
In this work, we attempt to overcome the “curse of dimensionality” inherent to neutron diffusion kinetics problems by employing a novel reduced-order modeling technique known as proper generalized decomposition (PGD). The novelty of this work is that it represents the first attempt at applying PGD reduced-order modeling to time-dependent multigroup neutron diffusion kinetics. The performance of PGD reduced-order models (ROMs) will be quantified by comparing PGD ROMs to reference high-fidelity solutions using Rattlesnake for the TWIGL problem, a standard reactor kinetics benchmark.
We show that for problems that exhibit sufficient spatial regularity, our proposed PGD algorithm computes accurate ROMs in less time than the reference high-fidelity calculation. By considering a variation of the TWIGL benchmark that maintains an analogous delayed supercritical behavior but has a smooth spatial solution, we compute PGD ROMs with a maximum relative difference in total power of less than 2.2% using 103 fewer degrees of freedom and a speedup of nearly 13× when compared to reference solutions. However, when introducing the stronger spatial irregularities of the reference benchmark, the accuracy and timing of the proposed PGD algorithm diminishes. We show that by using continuous finite elements, PGD ROMs are subject to undesirable numerical oscillations. In this paper, we motivate the use of PGD in neutron diffusion kinetics, discuss the adopted mathematical framework, and using our results, discuss the challenges and unique aspects of our implementation.