ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Aerospace Nuclear Science & Technology
Organized to promote the advancement of knowledge in the use of nuclear science and technologies in the aerospace application. Specialized nuclear-based technologies and applications are needed to advance the state-of-the-art in aerospace design, engineering and operations to explore planetary bodies in our solar system and beyond, plus enhance the safety of air travel, especially high speed air travel. Areas of interest will include but are not limited to the creation of nuclear-based power and propulsion systems, multifunctional materials to protect humans and electronic components from atmospheric, space, and nuclear power system radiation, human factor strategies for the safety and reliable operation of nuclear power and propulsion plants by non-specialized personnel and more.
Meeting Spotlight
2024 ANS Winter Conference and Expo
November 17–21, 2024
Orlando, FL|Renaissance Orlando at SeaWorld
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Nov 2024
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
December 2024
Nuclear Technology
Fusion Science and Technology
November 2024
Latest News
NorthStar, MARS to vie for USS Enterprise dismantlement contract
NorthStar Group Services announced it will work with Modern American Recycling Services (MARS) to pursue work dismantling and disposing of decommissioned U.S. Navy nuclear aircraft carriers at the Port of Mobile, Ala. The work is to be performed by NorthStar subsidiary NorthStar Maritime Dismantlement Services and MARS subsidiary Modern American Recycling and Radiological Services.
Cesare Frepoli
Nuclear Science and Engineering | Volume 194 | Number 8 | August-September 2020 | Pages 825-832
Technical Note | doi.org/10.1080/00295639.2020.1753419
Articles are hosted by Taylor and Francis Online.
Integral systems test (IST) facilities, which are sometimes referred to as integral effects tests (IETs), play a key role in the design, assessment, and certification of innovative reactor designs. Data obtained using such facilities have been used to benchmark the best-estimate safety analysis computer codes used to evaluate nuclear plant safety. They have also been used to assess the effectiveness of safety system functions under simulated accident conditions. Scaling analyses are an important component in determining the applicability of an evaluation model for its intended purpose. Evaluation models can only approximate the physical behavior of postulated events on a prototype, and the judgment of their adequacy relies heavily on their capability in predicting IETs that were designed to simulate the events analyzed. With few exceptions, all ISTs are subscale representations of the power plants they are built to represent. As thermal-hydraulic computer codes are benchmarked to an IST database, the most important challenge for the analyst is the development of convincing scaling similarities between the IST and the plant. Unless such rules are clearly identified, it would not be possible to extend conclusions from the assessment of the tools against subscale data to the plant scenario time and geometry scales.