ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
December 2025
Nuclear Technology
Fusion Science and Technology
November 2025
Latest News
Project Pele progress: BWXT delivers fuel to INL
This week, BWX Technologies, alongside Idaho National Laboratory and the Department of Defense’s Strategic Capabilities Office, announced the arrival of a full core of TRISO fuel at INL’s Transient Reactor Test Facility.
Cesare Frepoli
Nuclear Science and Engineering | Volume 194 | Number 8 | August-September 2020 | Pages 825-832
Technical Note | doi.org/10.1080/00295639.2020.1753419
Articles are hosted by Taylor and Francis Online.
Integral systems test (IST) facilities, which are sometimes referred to as integral effects tests (IETs), play a key role in the design, assessment, and certification of innovative reactor designs. Data obtained using such facilities have been used to benchmark the best-estimate safety analysis computer codes used to evaluate nuclear plant safety. They have also been used to assess the effectiveness of safety system functions under simulated accident conditions. Scaling analyses are an important component in determining the applicability of an evaluation model for its intended purpose. Evaluation models can only approximate the physical behavior of postulated events on a prototype, and the judgment of their adequacy relies heavily on their capability in predicting IETs that were designed to simulate the events analyzed. With few exceptions, all ISTs are subscale representations of the power plants they are built to represent. As thermal-hydraulic computer codes are benchmarked to an IST database, the most important challenge for the analyst is the development of convincing scaling similarities between the IST and the plant. Unless such rules are clearly identified, it would not be possible to extend conclusions from the assessment of the tools against subscale data to the plant scenario time and geometry scales.