ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Aerospace Nuclear Science & Technology
Organized to promote the advancement of knowledge in the use of nuclear science and technologies in the aerospace application. Specialized nuclear-based technologies and applications are needed to advance the state-of-the-art in aerospace design, engineering and operations to explore planetary bodies in our solar system and beyond, plus enhance the safety of air travel, especially high speed air travel. Areas of interest will include but are not limited to the creation of nuclear-based power and propulsion systems, multifunctional materials to protect humans and electronic components from atmospheric, space, and nuclear power system radiation, human factor strategies for the safety and reliable operation of nuclear power and propulsion plants by non-specialized personnel and more.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Mar 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
March 2025
Nuclear Technology
Fusion Science and Technology
April 2025
Latest News
Nuclear News 40 Under 40 discuss the future of nuclear
Seven members of the inaugural Nuclear News 40 Under 40 came together on March 4 to discuss the current state of nuclear energy and what the future might hold for science, industry, and the public in terms of nuclear development.
To hear more insights from this talented group of young professionals, watch the “40 Under 40 Roundtable: Perspectives from Nuclear’s Rising Stars” on the ANS website.
Carolyn Coyle, Emilio Baglietto, Charles Forsberg
Nuclear Science and Engineering | Volume 194 | Number 8 | August-September 2020 | Pages 782-792
Technical Paper | doi.org/10.1080/00295639.2020.1723993
Articles are hosted by Taylor and Francis Online.
Liquid salts have become more attractive as coolants for low-carbon power generation due to needs for high-temperature heat and affordable energy storage. Of particular interest are halide salts utilized in fluoride-salt-cooled high-temperature reactors, molten salt reactors, and high-magnetic-field fusion machines, as well as in concentrated solar power systems. Because of their high-temperature operation and semitransparent nature, the liquid salts in these designs may experience the effects of participating media radiative heat transfer (RHT). While some work has been conducted on measuring the thermophysical properties of these fluids, there is currently very little known about their radiative properties.
Here, we present the initial results of a two-part methodology to enhance RHT understanding and improve modeling in high-temperature liquid salts. First, an experimental apparatus designed to measure liquid chloride and fluoride salt absorption coefficients by Fourier transform infrared spectroscopy was completed and validated with water measurements. Second, computational fluid dynamics (CFD) simulations were run to determine the contribution of thermal radiation to the overall heat transfer for flow between parallel plates. This geometry was used to verify code accuracy and investigate requirements for absorption coefficient spectral banding. Future work will be to complete halide salt absorption measurements and couple them to the established CFD methods to identify geometries and temperatures where RHT is significant and enable prediction of heat transfer in such systems.