ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Radiation Protection & Shielding
The Radiation Protection and Shielding Division is developing and promoting radiation protection and shielding aspects of nuclear science and technology — including interaction of nuclear radiation with materials and biological systems, instruments and techniques for the measurement of nuclear radiation fields, and radiation shield design and evaluation.
Meeting Spotlight
2024 ANS Winter Conference and Expo
November 17–21, 2024
Orlando, FL|Renaissance Orlando at SeaWorld
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Oct 2024
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
November 2024
Nuclear Technology
Fusion Science and Technology
Latest News
Remembering ANS President John Kelly
John Kelly, ANS past president (2018–19 ), passed away peacefully in his sleep on October 3, 2024, in Gilbert Ariz., at the age of 70. Kelly was born on March 9, 1954, and was the eldest of Jack and Aileen Kelly’s six children.
His career, which spanned more than 40 years, began at Sandia National Laboratories in Albuquerque, N.M., where he focused on safety and severe accident analysis. His leadership led him to Washington D.C., where he served as the deputy assistant secretary for nuclear reactor technologies at the U.S. Department of Energy. Kelly played a critical role in shaping nuclear policy and guiding the world through significant events, including the Fukushima Daiichi accident in Japan. At the end of his career, he was honored to serve as the American Nuclear Society’s president. In retirement, he was actively involved with ANS in technology events and mentoring the next generation of scientists.
Kelly is survived by his wife, Suzanne; his children Julie Kelly-Smith (Byron), John A. (Sarah), and Michael (Nicole); and grandchildren Kiri and Kyson Smith and John and Maximilian Kelly. His family was his pride and joy, including his cherished dog, Covie, who brought him happiness in recent years.
In lieu of flowers, donations may be made to the American Nuclear Society or Detroit Catholic Central High School (27225 Wixom Road, Novi, MI 48374). Please designate Memorial and specify John Kelly ’72 Memorial Fund.
In honor of Kelly's commitment to ANS and to celebrate his life, his profile from the July 2018 issue of Nuclear News is published below.
Carolyn Coyle, Emilio Baglietto, Charles Forsberg
Nuclear Science and Engineering | Volume 194 | Number 8 | August-September 2020 | Pages 782-792
Technical Paper | doi.org/10.1080/00295639.2020.1723993
Articles are hosted by Taylor and Francis Online.
Liquid salts have become more attractive as coolants for low-carbon power generation due to needs for high-temperature heat and affordable energy storage. Of particular interest are halide salts utilized in fluoride-salt-cooled high-temperature reactors, molten salt reactors, and high-magnetic-field fusion machines, as well as in concentrated solar power systems. Because of their high-temperature operation and semitransparent nature, the liquid salts in these designs may experience the effects of participating media radiative heat transfer (RHT). While some work has been conducted on measuring the thermophysical properties of these fluids, there is currently very little known about their radiative properties.
Here, we present the initial results of a two-part methodology to enhance RHT understanding and improve modeling in high-temperature liquid salts. First, an experimental apparatus designed to measure liquid chloride and fluoride salt absorption coefficients by Fourier transform infrared spectroscopy was completed and validated with water measurements. Second, computational fluid dynamics (CFD) simulations were run to determine the contribution of thermal radiation to the overall heat transfer for flow between parallel plates. This geometry was used to verify code accuracy and investigate requirements for absorption coefficient spectral banding. Future work will be to complete halide salt absorption measurements and couple them to the established CFD methods to identify geometries and temperatures where RHT is significant and enable prediction of heat transfer in such systems.