ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jul 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
August 2025
Nuclear Technology
Fusion Science and Technology
July 2025
Latest News
DOE issues new NEPA rule and procedures—and accelerates DOME reactor testing
Meeting a deadline set in President Trump’s May 23 executive order “Reforming Nuclear Reactor Testing at the Department of Energy,” the DOE on June 30 updated information on its National Environmental Policy Act (NEPA) rulemaking and implementation procedures and published on its website an interim final rule that rescinds existing regulations alongside new implementing procedures.
Jeremy Bittan
Nuclear Science and Engineering | Volume 194 | Number 8 | August-September 2020 | Pages 771-781
Technical Paper | doi.org/10.1080/00295639.2020.1743576
Articles are hosted by Taylor and Francis Online.
During a loss-of-coolant-accident (LOCA) transient in a pressurized water reactor (PWR), water from the primary circuit is lost at the break. PWR designs are equipped with safety systems (SS) such as safety injection or accumulators to inject water into the primary circuit and prevent the core from being degraded. Depending on the size, position, and orientation of the break, a part of the safety system injection (SSI) into the primary circuit will be lost at the break. This parameter has a significant influence on the time the core uncovers in case the SS are lost. MAAP5.04 enables users to define the part of SSI that is lost at the break. Apart from a double-ended–break LOCA transient, users struggle to define precisely the part of SSI lost at the break, but this choice can have an important impact on the transient key event times. Thanks to its detailed equations and nodalization, the reference Code for Analysis of Thermal Hydraulics during an Accident of Reactor and safety Evaluation (CATHARE) enables one to evaluate the part of SSI lost at the break. Numerous CATHARE calculations have been performed taking into account different break sizes, positions, and orientations to determine the part of SSI lost at the break in each case. A metamodel has been created from the constituted database and implemented in EDF MAAP5.04. This paper also presents the impact of these improvements on LOCA transients where SS are lost.