ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Human Factors, Instrumentation & Controls
Improving task performance, system reliability, system and personnel safety, efficiency, and effectiveness are the division's main objectives. Its major areas of interest include task design, procedures, training, instrument and control layout and placement, stress control, anthropometrics, psychological input, and motivation.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
May 2025
Fusion Science and Technology
Latest News
Sam Altman steps down as Oklo board chair
Advanced nuclear company Oklo Inc. has new leadership for its board of directors as billionaire Sam Altman is stepping down from the position he has held since 2015. The move is meant to open new partnership opportunities with OpenAI, where Altman is CEO, and other artificial intelligence companies.
Jean Baccou, Jinzhao Zhang, Philippe Fillion, Guillaume Damblin, Alessandro Petruzzi, Rafael Mendizábal, Francesc Reventos, Tomasz Skorek, Mathieu Couplet, Bertrand Iooss, Deog-Yeon Oh, Takeshi Takeda, Nils Sandberg
Nuclear Science and Engineering | Volume 194 | Number 8 | August-September 2020 | Pages 721-736
Technical Paper | doi.org/10.1080/00295639.2020.1759310
Articles are hosted by Taylor and Francis Online.
Uncertainty analysis is a key element in nuclear power plant deterministic safety analysis using best-estimate thermal-hydraulic codes and best-estimate-plus-uncertainty methodologies. If forward uncertainty propagation methods have now become mature for industrial applications, the input uncertainty quantification (IUQ) on the physical models still requires further investigations. The Organisation for Economic Co-operation and Development/Nuclear Energy Agency PREMIUM project attempted to benchmark the available IUQ methods, but observed a strong user effect due to the lack of best practices guidance. The SAPIUM project has been proposed toward the construction of a clear and shared systematic approach for IUQ. The main outcome of the project is a first “good-practices” document that can be exploited for safety study in order to reach consensus among experts on recommended practices as well as to identify remaining open issues for further developments. This paper describes the systematic approach that consists of five elements in a step-by-step approach to perform a meaningful model IUQ and validation as well as some good-practice guideline recommendations for each step.