ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jul 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
August 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Sandia and Aeva evaluate intrusion detection system
Sandia National Laboratories is collaborating with the California-based Aeva Technologies, a developer of next-generation sensing and perception systems, on the development of technology for strengthening security at U.S. nuclear reactor sites.
S. L. Sharma, J. R. Buchanan, M. A. Lopez de Bertodano
Nuclear Science and Engineering | Volume 194 | Number 8 | August-September 2020 | Pages 665-675
Technical Paper | doi.org/10.1080/00295639.2020.1744406
Articles are hosted by Taylor and Francis Online.
Thermally induced density wave instability (DWI) (Type-II) is an important phenomenon for two-phase flow industrial systems. Developing numerical tools and methods for the prediction of the DWI boundary is of importance in the design and safety of nuclear reactors. With the advent of computational fluid dynamics (CFD) in nuclear safety analysis, it is important to first verify the CFD results against existing theory and validate them with experimental data. In this work, a CFD two-fluid model (TFM) for DWI was implemented and verified against the theory of Ishii (1971). Closure relations were selected to approach the homogeneous equilibrium flow model. A steady-state verification of the model was carried out first. Then, dynamic verification was performed. Predictions of the stability boundary and the frequency of oscillations are in a good agreement with the theory. This study further verifies the dynamic capability of TFM CFD.