ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Jan 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
February 2026
Nuclear Technology
January 2026
Fusion Science and Technology
Latest News
The spark of the Super: Teller–Ulam and the birth of the H-bomb—rivalry, credit, and legacy at 75 years
In early 1951, Los Alamos scientists Edward Teller and Stanislaw Ulam devised a breakthrough that would lead to the hydrogen bomb [1]. Their design gave the United States an initial advantage in the Cold War, though comparable progress was soon achieved independently in the Soviet Union and the United Kingdom.
S. L. Sharma, J. R. Buchanan, M. A. Lopez de Bertodano
Nuclear Science and Engineering | Volume 194 | Number 8 | August-September 2020 | Pages 665-675
Technical Paper | doi.org/10.1080/00295639.2020.1744406
Articles are hosted by Taylor and Francis Online.
Thermally induced density wave instability (DWI) (Type-II) is an important phenomenon for two-phase flow industrial systems. Developing numerical tools and methods for the prediction of the DWI boundary is of importance in the design and safety of nuclear reactors. With the advent of computational fluid dynamics (CFD) in nuclear safety analysis, it is important to first verify the CFD results against existing theory and validate them with experimental data. In this work, a CFD two-fluid model (TFM) for DWI was implemented and verified against the theory of Ishii (1971). Closure relations were selected to approach the homogeneous equilibrium flow model. A steady-state verification of the model was carried out first. Then, dynamic verification was performed. Predictions of the stability boundary and the frequency of oscillations are in a good agreement with the theory. This study further verifies the dynamic capability of TFM CFD.