ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Education, Training & Workforce Development
The Education, Training & Workforce Development Division provides communication among the academic, industrial, and governmental communities through the exchange of views and information on matters related to education, training and workforce development in nuclear and radiological science, engineering, and technology. Industry leaders, education and training professionals, and interested students work together through Society-sponsored meetings and publications, to enrich their professional development, to educate the general public, and to advance nuclear and radiological science and engineering.
Meeting Spotlight
2024 ANS Winter Conference and Expo
November 17–21, 2024
Orlando, FL|Renaissance Orlando at SeaWorld
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Nov 2024
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
December 2024
Nuclear Technology
Fusion Science and Technology
November 2024
Latest News
History in the making: D&D begins on Three Mile Island-2
Constellation Energy has announced that it will seek to restart Unit 1 of the Three Mile Island nuclear power plant in Pennsylvania as part of an agreement with Microsoft to power that company’s data centers. Given the growing interest by tech companies in using clean, reliable nuclear power to meet their growing energy demands, the September 20 announcement to reopen TMI-1, which was shut down and defueled in 2019, was not a huge surprise.
Chih-Wei Chang, Jun Fang, Nam T. Dinh
Nuclear Science and Engineering | Volume 194 | Number 8 | August-September 2020 | Pages 650-664
Technical Paper | doi.org/10.1080/00295639.2020.1712928
Articles are hosted by Taylor and Francis Online.
Reynolds-Averaged Navier-Stoke (RANS) models offer an alternative avenue in predicting flow characteristics when the corresponding experiments are difficult to achieve due to geometry complexity, limited budget, or knowledge. RANS models require the knowledge of subgrid scale physics to solve conservation equations for mass, energy, and momentum. Mechanistic turbulence models, such as k-ε, are generally evaluated and calibrated for specific flow conditions with various degrees of uncertainty. These models have limited capability to assimilate a substantial amount of data due to model form constraints. Meanwhile, deep learning (DL) has been proven to be universal approximators with the potential to assimilate available, relevant, and adequately evaluated data. Moreover, deep neural networks (DNNs) can create surrogate models without knowing function forms. Such a data-driven approach can be used in updating fluid models based on observations as opposed to hard-wiring models with precalibrated correlations.
The paper presents progress in applying DNNs to model Reynolds stress using two machine learning (ML) frameworks. A novel flow feature coverage mapping is proposed to quantify the physics coverage of DL-based closures. It can be used to examine the sufficiency of training data and input flow features for data-driven turbulence models. The case of a backward-facing step is formulated to demonstrate that not only can DNNs discover underlying correlation behind fluid data but also they can be implemented in RANS to predict flow characteristics without numerical stability issues. The presented research is a crucial stepping-stone toward the data-driven turbulence modeling, which potentially benefits the design of data-driven experiments that can be used to validate fluid models with ML-based fluid closures.