ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Jan 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
February 2026
Nuclear Technology
January 2026
Fusion Science and Technology
Latest News
The spark of the Super: Teller–Ulam and the birth of the H-bomb—rivalry, credit, and legacy at 75 years
In early 1951, Los Alamos scientists Edward Teller and Stanislaw Ulam devised a breakthrough that would lead to the hydrogen bomb [1]. Their design gave the United States an initial advantage in the Cold War, though comparable progress was soon achieved independently in the Soviet Union and the United Kingdom.
Chih-Wei Chang, Jun Fang, Nam T. Dinh
Nuclear Science and Engineering | Volume 194 | Number 8 | August-September 2020 | Pages 650-664
Technical Paper | doi.org/10.1080/00295639.2020.1712928
Articles are hosted by Taylor and Francis Online.
Reynolds-Averaged Navier-Stoke (RANS) models offer an alternative avenue in predicting flow characteristics when the corresponding experiments are difficult to achieve due to geometry complexity, limited budget, or knowledge. RANS models require the knowledge of subgrid scale physics to solve conservation equations for mass, energy, and momentum. Mechanistic turbulence models, such as k-ε, are generally evaluated and calibrated for specific flow conditions with various degrees of uncertainty. These models have limited capability to assimilate a substantial amount of data due to model form constraints. Meanwhile, deep learning (DL) has been proven to be universal approximators with the potential to assimilate available, relevant, and adequately evaluated data. Moreover, deep neural networks (DNNs) can create surrogate models without knowing function forms. Such a data-driven approach can be used in updating fluid models based on observations as opposed to hard-wiring models with precalibrated correlations.
The paper presents progress in applying DNNs to model Reynolds stress using two machine learning (ML) frameworks. A novel flow feature coverage mapping is proposed to quantify the physics coverage of DL-based closures. It can be used to examine the sufficiency of training data and input flow features for data-driven turbulence models. The case of a backward-facing step is formulated to demonstrate that not only can DNNs discover underlying correlation behind fluid data but also they can be implemented in RANS to predict flow characteristics without numerical stability issues. The presented research is a crucial stepping-stone toward the data-driven turbulence modeling, which potentially benefits the design of data-driven experiments that can be used to validate fluid models with ML-based fluid closures.