ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Reactor Physics
The division's objectives are to promote the advancement of knowledge and understanding of the fundamental physical phenomena characterizing nuclear reactors and other nuclear systems. The division encourages research and disseminates information through meetings and publications. Areas of technical interest include nuclear data, particle interactions and transport, reactor and nuclear systems analysis, methods, design, validation and operating experience and standards. The Wigner Award heads the awards program.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
May 2025
Fusion Science and Technology
Latest News
Sam Altman steps down as Oklo board chair
Advanced nuclear company Oklo Inc. has new leadership for its board of directors as billionaire Sam Altman is stepping down from the position he has held since 2015. The move is meant to open new partnership opportunities with OpenAI, where Altman is CEO, and other artificial intelligence companies.
Chih-Wei Chang, Jun Fang, Nam T. Dinh
Nuclear Science and Engineering | Volume 194 | Number 8 | August-September 2020 | Pages 650-664
Technical Paper | doi.org/10.1080/00295639.2020.1712928
Articles are hosted by Taylor and Francis Online.
Reynolds-Averaged Navier-Stoke (RANS) models offer an alternative avenue in predicting flow characteristics when the corresponding experiments are difficult to achieve due to geometry complexity, limited budget, or knowledge. RANS models require the knowledge of subgrid scale physics to solve conservation equations for mass, energy, and momentum. Mechanistic turbulence models, such as k-ε, are generally evaluated and calibrated for specific flow conditions with various degrees of uncertainty. These models have limited capability to assimilate a substantial amount of data due to model form constraints. Meanwhile, deep learning (DL) has been proven to be universal approximators with the potential to assimilate available, relevant, and adequately evaluated data. Moreover, deep neural networks (DNNs) can create surrogate models without knowing function forms. Such a data-driven approach can be used in updating fluid models based on observations as opposed to hard-wiring models with precalibrated correlations.
The paper presents progress in applying DNNs to model Reynolds stress using two machine learning (ML) frameworks. A novel flow feature coverage mapping is proposed to quantify the physics coverage of DL-based closures. It can be used to examine the sufficiency of training data and input flow features for data-driven turbulence models. The case of a backward-facing step is formulated to demonstrate that not only can DNNs discover underlying correlation behind fluid data but also they can be implemented in RANS to predict flow characteristics without numerical stability issues. The presented research is a crucial stepping-stone toward the data-driven turbulence modeling, which potentially benefits the design of data-driven experiments that can be used to validate fluid models with ML-based fluid closures.