ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Jan 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
February 2026
Nuclear Technology
January 2026
Fusion Science and Technology
Latest News
The spark of the Super: Teller–Ulam and the birth of the H-bomb—rivalry, credit, and legacy at 75 years
In early 1951, Los Alamos scientists Edward Teller and Stanislaw Ulam devised a breakthrough that would lead to the hydrogen bomb [1]. Their design gave the United States an initial advantage in the Cold War, though comparable progress was soon achieved independently in the Soviet Union and the United Kingdom.
H. Y. Yoon, I. K. Park, J. R. Lee, S. J. Lee, Y. J. Cho, S. J. Do, H. K. Cho, J. J. Jeong
Nuclear Science and Engineering | Volume 194 | Number 8 | August-September 2020 | Pages 633-649
Technical Paper | doi.org/10.1080/00295639.2020.1727698
Articles are hosted by Taylor and Francis Online.
A high-fidelity safety analysis method for pressurized water reactors (PWRs) is presented using a multiscale and multiphysics coupled code. Computational resolution of the conventional safety analysis can be greatly improved using this method in which the whole reactor vessel is modeled at a subchannel scale with around 5 million calculation meshes. Three-dimensional thermal hydraulics inside the reactor vessel is simulated using CUPID-RV with subchannel-scale thermal-hydraulic models for the reactor core. The subchannel models were validated using the legacy rod bundle experiments including single- and two-phase flow tests that were used in the validation of other subchannel analysis codes. The three-dimensional mesh was generated for the reactor vessel. Structured meshes were used in the core region for the subchannel model, and body-fitted unstructured meshes were applied for the downcomer, lower and upper plenums, and hot and cold legs. The number of meshes was optimized for a practical calculation. A three-dimensional core kinetics code (MASTER) and a one-dimensional system analysis code (MARS) were coupled with CUPID-RV for an accident analysis of PWRs. Subchannel-scale full-core steam line break accident analysis of the OPR1000 PWR was realized using the coupled code (MASTER/CUPID-RV/MARS) with a reasonable computation time, and thus, the present method can be used as a practical tool for three-dimensional safety analysis of PWRs.