ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Feb 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
March 2026
Nuclear Technology
February 2026
Fusion Science and Technology
January 2026
Latest News
Fusion energy: Progress, partnerships, and the path to deployment
Over the past decade, fusion energy has moved decisively from scientific aspiration toward a credible pathway to a new energy technology. Thanks to long-term federal support, we have significantly advanced our fundamental understanding of plasma physics—the behavior of the superheated gases at the heart of fusion devices. This knowledge will enable the creation and control of fusion fuel under conditions required for future power plants. Our progress is exemplified by breakthroughs at the National Ignition Facility and the Joint European Torus.
José N. Reyes, Jr.
Nuclear Science and Engineering | Volume 194 | Number 8 | August-September 2020 | Pages 620-632
Technical Paper | doi.org/10.1080/00295639.2020.1721236
Articles are hosted by Taylor and Francis Online.
As part of its design certification effort, NuScale Power has completed a series of low mass flux [<1000 kg/(m2‧s)] critical heat flux (CHF) tests for a wide range of pressures at Stern Laboratories in Canada. Earlier studies have demonstrated that under annular flow conditions, disturbance waves with circulating vortices traverse the rod surface. The disturbance wave slides over and significantly influences energy transport in the co-current vapor-liquid sublayer at the heater interface. This paper describes the mechanisms leading to the onset of CHF in a vertical rod bundle experiencing annular mist flow conditions. The paper presents a new CHF model that implements a local disturbance wave velocity. A comparison of the model to the U1 CHF data set from Stern Laboratories shows excellent agreement over the full range of annular mist flows, pressures, and subcooled conditions for the specific spacer grids implemented in the study.