ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Jan 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
February 2026
Nuclear Technology
January 2026
Fusion Science and Technology
Latest News
The spark of the Super: Teller–Ulam and the birth of the H-bomb—rivalry, credit, and legacy at 75 years
In early 1951, Los Alamos scientists Edward Teller and Stanislaw Ulam devised a breakthrough that would lead to the hydrogen bomb [1]. Their design gave the United States an initial advantage in the Cold War, though comparable progress was soon achieved independently in the Soviet Union and the United Kingdom.
Zhiee Jhia Ooi, Vineet Kumar, Caleb S. Brooks
Nuclear Science and Engineering | Volume 194 | Number 8 | August-September 2020 | Pages 598-619
Technical Paper | doi.org/10.1080/00295639.2020.1732123
Articles are hosted by Taylor and Francis Online.
The static correlations from RELAP5 and TRACE as well as the interfacial area transport equation (IATE) are benchmarked for flashing flow with selected cases from a recently published experimental data set. The RELAP5 correlation is able to predict the interfacial area concentration more accurately than the TRACE correlation. The one-group decoupled IATE, supplied with experimental void fraction, shows overprediction of interfacial area concentration, especially at low-pressure conditions. Additionally, the one-group IATE is solved simultaneously with the void transport equation where at low pressures, the accuracy of the predicted interfacial area concentration improves even with the void fraction being underpredicted. However, as the pressure increases, the improving accuracy of the predicted void fraction leads to an overprediction of the interfacial area concentration. The two-group IATE is also benchmarked, first using the interfacial mass generation model from RELAP5 and TRACE and then with a model derived through a mass-energy balance approach. The accuracy of the two-group IATE is observed to be sensitive to the choice of the heat transfer length scale and Nusselt number correlations.