ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2025 ANS Winter Conference & Expo
November 9–12, 2025
Washington, DC|Washington Hilton
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Sep 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
October 2025
Nuclear Technology
September 2025
Fusion Science and Technology
Latest News
IAEA again raises global nuclear power projections
Noting recent momentum behind nuclear power, the International Atomic Energy Agency has revised up its projections for the expansion of nuclear power, estimating that global nuclear operational capacity will more than double by 2050—reaching 2.6 times the 2024 level—with small modular reactors expected to play a pivotal role in this high-case scenario.
IAEA director general Rafael Mariano Grossi announced the new projections, contained in the annual report Energy, Electricity, and Nuclear Power Estimates for the Period up to 2050 at the 69th IAEA General Conference in Vienna.
In the report’s high-case scenario, nuclear electrical generating capacity is projected to increase to from 377 GW at the end of 2024 to 992 GW by 2050. In a low-case scenario, capacity rises 50 percent, compared with 2024, to 561 GW. SMRs are projected to account for 24 percent of the new capacity added in the high case and for 5 percent in the low case.
Albert Hsieh, Guangchun Zhang, Won Sik Yang
Nuclear Science and Engineering | Volume 194 | Number 7 | July 2020 | Pages 508-540
Technical Paper | doi.org/10.1080/00295639.2020.1746619
Articles are hosted by Taylor and Francis Online.
This paper presents the three new pin-resolved transient solvers of PROTEUS-MOC developed in a consistent way to the latest steady-state solver. A new transient fixed source problem (TFSP) solver was developed without relying on the isotropic approximation of the angular flux time derivative. A moving axial mesh scheme was also implemented to model the control rod movement accurately with coarse axial meshes. In addition, in order to reduce the computational time further, an improved quasi-static method (IQM) solver and a predictor-corrector quasi-static method (PCQM) solver were developed in a consistent way to the TFSP solver. Initial verification tests were performed using the C5G7-TD benchmark problems. The results of the direct TFSP solver agreed very well with the MPACT and NECP-X solutions within ~2.5%. Additional analyses suggested that the observed differences are mainly due to the coarse time steps used in the MAPCT and NECP-X calculations. These results indicate that the direct TFSP solver of PROTEUS-MOC was correctly implemented and the moving axial mesh scheme is working properly. Numerical tests of IQM and PCQM against the direct TFSP solver showed that the IQM and PCQM solvers can reduce the computational time about 10 to 100 times without any significant loss of accuracy by allowing larger time steps. The PCQM calculation with the quadratic interpolation of kinetics parameters (KPs) showed the best performance among the four combinations of the IQM and PCQM solvers and the linear and quadratic interpolation schemes of KPs. This study also showed that the different delayed neutron precursor models of six and eight families can cause larger power differences than the different high-fidelity transient codes and that the adjoint scalar flux weighting can cause significant errors in KPs and subsequently in power evolution. In addition, the transient analyses of a modified C5G7 benchmark problem containing a void channel similar to the hodoscope channel of the Transient Reactor Test (TREAT) facility showed that the isotropic approximation of the angular flux time derivative can cause nonnegligible errors in the time-dependent power distribution. This study also demonstrated that PROTEUS-MOC can be used for transient analyses of reactors with internal void regions.