ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Robotics & Remote Systems
The Mission of the Robotics and Remote Systems Division is to promote the development and application of immersive simulation, robotics, and remote systems for hazardous environments for the purpose of reducing hazardous exposure to individuals, reducing environmental hazards and reducing the cost of performing work.
Meeting Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jun 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
August 2025
Nuclear Technology
July 2025
Fusion Science and Technology
Latest News
NRC cuts fees by 50 percent for advanced reactor applicants
The Nuclear Regulatory Commission has announced it has amended regulations for the licensing, inspection, special projects, and annual fees it will charge applicants and licensees for fiscal year 2025.
Mengkun Li, Guanxiang Wei, Zhihui Xu, Jun Wang, Ming Yang
Nuclear Science and Engineering | Volume 194 | Number 6 | June 2020 | Pages 447-461
Technical Paper | doi.org/10.1080/00295639.2019.1710975
Articles are hosted by Taylor and Francis Online.
This study introduces a radiation avoidance algorithm to help radiological occupational personnel (ROP) avoid high radiation exposure in a radioactive environment. The premise of this study is that ROP can be designated as a movable point in a two-dimensional radioactive scene with known radioactive sources. A trajectory of ROP is generated by the radiation avoidance algorithm based on an artificial potential field (APF) and particle swarm optimization (PSO). In the algorithm, ROP is subjected to an attractive force from a target as well as multiple repulsive forces from multiple radioactive sources. The attractive force and repulsive forces drive ROP moving toward the target along the trajectory. APF has obvious difficulties with parameter selection and a local minima problem. So, we used the PSO algorithm to solve these difficulties of APF. Additionally, we developed a radiation avoidance simulation program using the C# programming language. Simulation experiments showed the proposed algorithm could be useful to meet the challenges of radiation avoidance applications that can be described as trajectory optimization problems.