ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Jan 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
February 2026
Nuclear Technology
January 2026
Fusion Science and Technology
Latest News
The spark of the Super: Teller–Ulam and the birth of the H-bomb—rivalry, credit, and legacy at 75 years
In early 1951, Los Alamos scientists Edward Teller and Stanislaw Ulam devised a breakthrough that would lead to the hydrogen bomb [1]. Their design gave the United States an initial advantage in the Cold War, though comparable progress was soon achieved independently in the Soviet Union and the United Kingdom.
Mengkun Li, Guanxiang Wei, Zhihui Xu, Jun Wang, Ming Yang
Nuclear Science and Engineering | Volume 194 | Number 6 | June 2020 | Pages 447-461
Technical Paper | doi.org/10.1080/00295639.2019.1710975
Articles are hosted by Taylor and Francis Online.
This study introduces a radiation avoidance algorithm to help radiological occupational personnel (ROP) avoid high radiation exposure in a radioactive environment. The premise of this study is that ROP can be designated as a movable point in a two-dimensional radioactive scene with known radioactive sources. A trajectory of ROP is generated by the radiation avoidance algorithm based on an artificial potential field (APF) and particle swarm optimization (PSO). In the algorithm, ROP is subjected to an attractive force from a target as well as multiple repulsive forces from multiple radioactive sources. The attractive force and repulsive forces drive ROP moving toward the target along the trajectory. APF has obvious difficulties with parameter selection and a local minima problem. So, we used the PSO algorithm to solve these difficulties of APF. Additionally, we developed a radiation avoidance simulation program using the C# programming language. Simulation experiments showed the proposed algorithm could be useful to meet the challenges of radiation avoidance applications that can be described as trajectory optimization problems.