ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Materials Science & Technology
The objectives of MSTD are: promote the advancement of materials science in Nuclear Science Technology; support the multidisciplines which constitute it; encourage research by providing a forum for the presentation, exchange, and documentation of relevant information; promote the interaction and communication among its members; and recognize and reward its members for significant contributions to the field of materials science in nuclear technology.
Meeting Spotlight
2025 ANS Annual Conference
June 15–18, 2025
Chicago, IL|Chicago Marriott Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
May 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
July 2025
Nuclear Technology
June 2025
Fusion Science and Technology
Latest News
BREAKING NEWS: Trump issues executive orders to overhaul nuclear industry
The Trump administration issued four executive orders today aimed at boosting domestic nuclear deployment ahead of significant growth in projected energy demand in the coming decades.
During a live signing in the Oval Office, President Donald Trump called nuclear “a hot industry,” adding, “It’s a brilliant industry. [But] you’ve got to do it right. It’s become very safe and environmental.”
Mengkun Li, Guanxiang Wei, Zhihui Xu, Jun Wang, Ming Yang
Nuclear Science and Engineering | Volume 194 | Number 6 | June 2020 | Pages 447-461
Technical Paper | doi.org/10.1080/00295639.2019.1710975
Articles are hosted by Taylor and Francis Online.
This study introduces a radiation avoidance algorithm to help radiological occupational personnel (ROP) avoid high radiation exposure in a radioactive environment. The premise of this study is that ROP can be designated as a movable point in a two-dimensional radioactive scene with known radioactive sources. A trajectory of ROP is generated by the radiation avoidance algorithm based on an artificial potential field (APF) and particle swarm optimization (PSO). In the algorithm, ROP is subjected to an attractive force from a target as well as multiple repulsive forces from multiple radioactive sources. The attractive force and repulsive forces drive ROP moving toward the target along the trajectory. APF has obvious difficulties with parameter selection and a local minima problem. So, we used the PSO algorithm to solve these difficulties of APF. Additionally, we developed a radiation avoidance simulation program using the C# programming language. Simulation experiments showed the proposed algorithm could be useful to meet the challenges of radiation avoidance applications that can be described as trajectory optimization problems.