ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Reactor Physics
The division's objectives are to promote the advancement of knowledge and understanding of the fundamental physical phenomena characterizing nuclear reactors and other nuclear systems. The division encourages research and disseminates information through meetings and publications. Areas of technical interest include nuclear data, particle interactions and transport, reactor and nuclear systems analysis, methods, design, validation and operating experience and standards. The Wigner Award heads the awards program.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
May 2025
Fusion Science and Technology
Latest News
Sam Altman steps down as Oklo board chair
Advanced nuclear company Oklo Inc. has new leadership for its board of directors as billionaire Sam Altman is stepping down from the position he has held since 2015. The move is meant to open new partnership opportunities with OpenAI, where Altman is CEO, and other artificial intelligence companies.
N. V. Kornilov, S. M. Grimes, T. N. Massey, C. E. Brient, D. E. Carter, J. E. O’Donnell, K. W. Cooper, A. D. Carlson, F. B. Bateman, C. R. Heimbach, N. Boukharouba
Nuclear Science and Engineering | Volume 194 | Number 5 | May 2020 | Pages 335-349
Technical Paper | doi.org/10.1080/00295639.2019.1702408
Articles are hosted by Taylor and Francis Online.
The n-p scattering angular distribution was measured with 14.9 MeV incident neutrons produced at the neutron facility of Ohio University. The traditional time-of-flight technique with neutron-gamma discrimination was applied for the measurement of the number and energy of scattered neutrons. The scattering angle varied from 20 to 65 deg (laboratory system) in 5 deg incremental steps corresponding to an ejectile energy range from 13.16 to 2.66 MeV. The efficiency of the neutron detectors was measured in the energy range 2 to 9 MeV relative to the 252Cf standard and was calculated using Monte Carlo methods in the 2 to 14 MeV energy range. Two methods of analysis were applied for experimental and simulated data: a traditional approach with a fixed threshold ~0.1MeVee and a dynamic threshold approach. The efficiencies determined by both methods are in excellent agreement for simulated and experimental results within the energy interval 2 to 9 MeV. The experimental (<9 MeV) and calculated efficiencies (>9 MeV) were applied for evaluation of the n-p scattering experimental result. The corrections for neutron attenuation in the “scatter-detector” were calculated with analytical formulas and by the Monte Carlo method. Additional minor corrections for edge effect, C(n,n’)3α background and dead time were also included. The present data agree with recent evaluations for the n-p angular distribution within about 1.6%. The current state-of-the-art of experimental uncertainties that can be realized for a neutron counting experiment were reached in this investigation. An additional correlation analysis allows us to conclude that the standard deviation connected with existing correlations may be the main component of the total uncertainty.