ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Operations & Power
Members focus on the dissemination of knowledge and information in the area of power reactors with particular application to the production of electric power and process heat. The division sponsors meetings on the coverage of applied nuclear science and engineering as related to power plants, non-power reactors, and other nuclear facilities. It encourages and assists with the dissemination of knowledge pertinent to the safe and efficient operation of nuclear facilities through professional staff development, information exchange, and supporting the generation of viable solutions to current issues.
Meeting Spotlight
2025 ANS Annual Conference
June 15–18, 2025
Chicago, IL|Chicago Marriott Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
May 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
July 2025
Nuclear Technology
June 2025
Fusion Science and Technology
Latest News
BREAKING NEWS: Trump issues executive orders to overhaul nuclear industry
The Trump administration issued four executive orders today aimed at boosting domestic nuclear deployment ahead of significant growth in projected energy demand in the coming decades.
During a live signing in the Oval Office, President Donald Trump called nuclear “a hot industry,” adding, “It’s a brilliant industry. [But] you’ve got to do it right. It’s become very safe and environmental.”
Alexander R. Clark, John Mattingly, Jeffrey A. Favorite
Nuclear Science and Engineering | Volume 194 | Number 4 | April 2020 | Pages 308-333
Technical Paper | doi.org/10.1080/00295639.2019.1698267
Articles are hosted by Taylor and Francis Online.
This paper presents the first application of model calibration to neutron multiplicity counting (NMC) experiments for cross-section optimization that is informed by adjoint-based sensitivity analysis (SA) and first-order uncertainty quantification (UQ). We summarize previous work on SA applied to NMC and describe notable modifications and additions. We give the procedure for first-order UQ and Bayesian-inference-based parameter estimation (PE). We then discuss model calibration applied to NMC of a 4.5-kg sphere of weapons-grade, alpha-phase plutonium metal (the BeRP ball) with the nPod neutron multiplicity counter. For the BeRP ball in bare and polyethylene-reflected configurations, we discuss the sensitivity of the first- and second-moment detector responses (i.e., first and second moments of the NMC distribution, respectively) to the cross sections. We describe the sources of uncertainty in the measured and simulated responses. Specifically, uncertainty in the measured responses is due to both random and systematic sources. Uncertainty in the simulated responses is due to the cross-section covariances. We describe in detail the adjustment to the cross sections and cross-section covariances due to the optimization. Due to the contribution of systematic uncertainties to the measured response uncertainties, the adjustment to the cross sections is similar in trend but larger in magnitude compared to that recommended by previous work. We compare the measured responses to responses simulated with nominal and optimized cross sections, demonstrating that the best-estimate cross sections produce simulations of NMC experiments that are more accurate with reduced uncertainty.