ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Decommissioning & Environmental Sciences
The mission of the Decommissioning and Environmental Sciences (DES) Division is to promote the development and use of those skills and technologies associated with the use of nuclear energy and the optimal management and stewardship of the environment, sustainable development, decommissioning, remediation, reutilization, and long-term surveillance and maintenance of nuclear-related installations, and sites. The target audience for this effort is the membership of the Division, the Society, and the public at large.
Meeting Spotlight
2024 ANS Winter Conference and Expo
November 17–21, 2024
Orlando, FL|Renaissance Orlando at SeaWorld
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Sep 2024
Jan 2024
Latest Journal Issues
Nuclear Science and Engineering
October 2024
Nuclear Technology
Fusion Science and Technology
Latest News
NRC reviewing 2 unplanned shutdowns at South Texas Project
The U.S. Nuclear Regulatory Commission began a special inspection last week at South Texas Project nuclear power plant into two incidents at the site, which led to separate, unplanned shutdowns of both Units 1 and 2.
HyeonTae Kim, YuGwon Jo, Yonghee Kim
Nuclear Science and Engineering | Volume 194 | Number 4 | April 2020 | Pages 297-307
Technical Paper | doi.org/10.1080/00295639.2019.1698240
Articles are hosted by Taylor and Francis Online.
Performance enhancement of the spectral analysis method (SAM) for evaluating the real variance of local tallies from the partial current–based coarse-mesh finite difference (p-CMFD) feedback is verified and explained. In the SAM, on successive Monte Carlo (MC) cycles, the real variance is obtained from the cyclewise samples instead of an explicit evaluation of covariance. However, if the cycle correlation is strong, there is a bias and variance trade-off in the evaluated true uncertainty. This study shows that the p-CMFD feedback reduces the cycle covariance and hence eliminates the trade-off. A one-dimensional slab reactor and a three-dimensional simplified BEAVRS benchmark problem are analyzed, and the real standard deviation of the local tally is estimated from the SAM and compared with that from the conventional multibatch method. It is shown that the SAM with p-CMFD feedback can accurately calculate the real uncertainty without changing the MC algorithm and incurring computation burden.