ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Jan 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
February 2026
Nuclear Technology
January 2026
Fusion Science and Technology
Latest News
The spark of the Super: Teller–Ulam and the birth of the H-bomb—rivalry, credit, and legacy at 75 years
In early 1951, Los Alamos scientists Edward Teller and Stanislaw Ulam devised a breakthrough that would lead to the hydrogen bomb [1]. Their design gave the United States an initial advantage in the Cold War, though comparable progress was soon achieved independently in the Soviet Union and the United Kingdom.
Stefano Terlizzi, Dan Kotlyar
Nuclear Science and Engineering | Volume 194 | Number 4 | April 2020 | Pages 280-296
Technical Paper | doi.org/10.1080/00295639.2019.1698239
Articles are hosted by Taylor and Francis Online.
Monte Carlo (MC) codes are widely used for the accurate modeling of nuclear reactors. However, efficient inclusion of thermal-hydraulic (TH) feedback within the MC calculation sequence is still an open problem. The issue is emphasized when coupled MC-TH calculations are needed to model the burnup evolution using multiple depletion steps. Among the techniques proposed to solve this problem is the utilization of stabilized Picard iteration in conjunction with a low-order prediction step. The latter is composed of a prediction block for cross sections and a fast deterministic solver that uses the cross sections to obtain a prediction of the power profile. The predicted power is then used as an improved guess for the next MC calculation, therefore leading to faster convergence for the overall algorithm. In this paper, we propose a new prediction block in which one-group cross sections are calculated through convolution of the TH scalar fields with MC-generated generalized transfer functions (GTFs). First-order perturbation theory is then utilized to calculate the power profile from the updated cross sections. A version of this prediction block using a simple fast Fourier transform–based approximation of the GTF is tested against a boiling water reactor unit-cell with realistic density profile and axial reflectors. The analysis was limited to the feedback between neutronics and coolant density variation. Good agreement was observed for both the spatial power and the one-group macroscopic cross-section profiles, which were compared to the reference MC results. This agreement was also preserved near the boundary, where the spatial flux gradients are maximum due to proximity to the axial reflectors.