ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Nuclear Nonproliferation Policy
The mission of the Nuclear Nonproliferation Policy Division (NNPD) is to promote the peaceful use of nuclear technology while simultaneously preventing the diversion and misuse of nuclear material and technology through appropriate safeguards and security, and promotion of nuclear nonproliferation policies. To achieve this mission, the objectives of the NNPD are to: Promote policy that discourages the proliferation of nuclear technology and material to inappropriate entities. Provide information to ANS members, the technical community at large, opinion leaders, and decision makers to improve their understanding of nuclear nonproliferation issues. Become a recognized technical resource on nuclear nonproliferation, safeguards, and security issues. Serve as the integration and coordination body for nuclear nonproliferation activities for the ANS. Work cooperatively with other ANS divisions to achieve these objective nonproliferation policies.
Meeting Spotlight
2024 ANS Winter Conference and Expo
November 17–21, 2024
Orlando, FL|Renaissance Orlando at SeaWorld
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Oct 2024
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
November 2024
Nuclear Technology
Fusion Science and Technology
Latest News
Keeping up with Kewaunee
In October 2012, Dominion Energy announced it was closing the Kewaunee nuclear power plant, a two-loop 574-MWe pressurized water reactor located about 27 miles southeast of Green Bay, Wis., on the western shore of Lake Michigan. At the time, Dominion said the plant was running well, but that low wholesale electricity prices in the region made it uneconomical to continue operation of the single-unit merchant power plant.
Qian Zhang, Liang Liang, Qiang Zhao, Zhijian Zhang, Hongchun Wu, Liangzhi Cao
Nuclear Science and Engineering | Volume 194 | Number 3 | March 2020 | Pages 232-247
Technical Note | doi.org/10.1080/00295639.2019.1664146
Articles are hosted by Taylor and Francis Online.
The Embedded Self-Shielding Method (ESSM) coupled with the heterogeneous Resonance Integral tables and the Enhanced Neutron Current Method (ENCM) with equivalent Dancoff factor are reviewed and reformulated to a unified framework by incorporating the ultra-fine-group slowing-down calculation on two-dimensional square pin cell problems. The comparison between the two approaches on the resonance self-shielding calculation of irregular fuel lattices shows that the reformulated ESSM approach will bring errors to the cross-section prediction of fuel pins in the irregular lattice, especially when the moderator density is low. Also, the reformulated ENCM approach is more stable for different configurations. Further numerical tests show that the scalar flux calculated by the ESSM approach is affected by the global neutron balance across the fuel lattice and ESSM is more sensitive to the error brought by the enforced equivalence.