ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jul 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
September 2025
Nuclear Technology
August 2025
Fusion Science and Technology
Latest News
Deep geologic repository progress—2025 Update
Editor's note: This article has was originally published in November 2023. It has been updated with new information as of June 2025.
Outside my office, there is a display case filled with rock samples from all over the world. It contains a disk of translucent, orange salt from the Waste Isolation Pilot Plant near Carlsbad, N.M.; a core of white-and-bronze gneiss from the site of the future deep geologic repository in Eurajoki, Finland; several angular chunks of fine-grained, gray claystone from the underground research laboratory at Bure, France; and a piece of coarse-grained granite from the underground research tunnel in Daejeon, South Korea.
Jesse M. Brown, R. C. Block, A. Youmans, H. Choun, A. Ney, E. Blain, D. P. Barry, M. J. Rapp, Y. Danon
Nuclear Science and Engineering | Volume 194 | Number 3 | March 2020 | Pages 221-231
Technical Paper | doi.org/10.1080/00295639.2019.1688087
Articles are hosted by Taylor and Francis Online.
Often discrepancies can be found in the corresponding cross sections of different evaluated nuclear data libraries. Traditional integral benchmarks that are used to validate such libraries are sensitive to cross-section values across many different energies. This means an erroneously low cross section at one energy may compensate for an erroneously high cross section at another energy, and the integral benchmark value may still be met. While the evaluated cross section may agree with that single benchmark, it could affect other systems differently. To reduce the potential for this error, an energy differential validation method is proposed herein for continuous energy Monte Carlo neutron transport models in the resolved resonance region and the unresolved resonance region (URR). The proposed method exposes the underlying physics of the URR and validates both the average cross section and resonance self-shielding effect driven by the fluctuations in that cross section. This is done by measuring the neutron transmission of a thick sample that, by its nature, exaggerates the resonance self-shielding effect. This validation method is shown to be very sensitive to the cross-section model used (resolved versus unresolved) and the fluctuation correction employed, allowing it to probe the validity of the previously mentioned cross-section evaluations. Tantalum-181 is used as an example to demonstrate the impact of different resonance evaluations. It was found that the JEFF-3.3 and JENDL-4.0u evaluations made reasonable choices for cross-section models of 181Ta; none of the current evaluations, however, can be used to properly model the validation transmission over all energies. It was also found that updating resonance parameters in the URR provided better agreement with the validation transmission.