ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jul 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
August 2025
Nuclear Technology
Fusion Science and Technology
July 2025
Latest News
DOE on track to deliver high-burnup SNF to Idaho by 2027
The Department of Energy said it anticipated delivering a research cask of high-burnup spent nuclear fuel from Dominion Energy’s North Anna nuclear power plant in Virginia to Idaho National Laboratory by fall 2027. The planned shipment is part of the High Burnup Dry Storage Research Project being conducted by the DOE with the Electric Power Research Institute.
As preparations continue, the DOE said it is working closely with federal agencies as well as tribal and state governments along potential transportation routes to ensure safety, transparency, and readiness every step of the way.
Watch the DOE’s latest video outlining the project here.
Rei Kimura, Kazuhito Asano
Nuclear Science and Engineering | Volume 194 | Number 3 | March 2020 | Pages 213-220
Technical Paper | doi.org/10.1080/00295639.2019.1685352
Articles are hosted by Taylor and Francis Online.
Nuclear energy has been one of the sustainable energy sources, but after the Fukushima Daiichi nuclear accident, large-scale light water reactors are losing price competitiveness due to the rising costs to meet elevated safety standards. On the other hand, small modular reactors (SMRs) have been developed by various teams and are expected to provide not only electricity but also heat for small communities, chemical plants, factories, mines, and hydrogen production. Since 2017, a multipurpose very small modular reactor (vSMR), namely, Mobile-Very-small reactor for Local Utility in X-mark (MoveluXTM), has been studied at Toshiba Energy Systems and Solutions Corporation as a feasible distributed energy source. The main concept to MoveluX is a heat pipe–cooled calcium hydride–moderated core to simplify the reactor system while increasing inherent safety and nuclear security. Portable vSMRs are useful for remote places; therefore, criticality safety during their transport is essential for vSMRs to gain popularity. In a previous paper, we discuss positive temperature reactivity coefficients of the hydride-moderated core and its control method. The phenomenon is caused by thermal-neutron spectrum shifts at increased temperatures. In the current paper, we show that a positive temperature reactivity coefficient can be utilized to maintain subcriticality during transport. The reactor core requires preheating to achieve criticality, which means the core does not become critical even though safety rods have been extracted in the low-temperature range. The positive reactivity in the low-temperature range establishes inherent criticality safety during transport of the reactor system.