ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jan 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
January 2026
Nuclear Technology
December 2025
Fusion Science and Technology
November 2025
Latest News
DOE awards $2.7B for HALEU and LEU enrichment
Yesterday, the Department of Energy announced that three enrichment services companies have been awarded task orders worth $900 million each. Those task orders were given to American Centrifuge Operating (a Centrus Energy subsidiary) and General Matter, both of which will develop domestic HALEU enrichment capacity, along with Orano Federal Services, which will build domestic LEU enrichment capacity.
The DOE also announced that it has awarded Global Laser Enrichment an additional $28 million to continue advancing next generation enrichment technology.
Kodai Fukuda, Delgersaikhan Tuya, Jun Nishiyama, Toru Obara
Nuclear Science and Engineering | Volume 194 | Number 3 | March 2020 | Pages 181-189
Technical Paper | doi.org/10.1080/00295639.2019.1665459
Articles are hosted by Taylor and Francis Online.
Removal of fuel debris is regarded as one of the most important operations in the decommissioning of the Fukushima Daiichi nuclear power station (1F-NPS) to decrease long-term risk. To begin the operation, the consequences of possible criticality accidents must be evaluated in advance. In this work, we evaluated radiation doses during possible criticality accidents at 1F-NPS in assumptive fuel debris systems. In particular, the relationship between the water level surrounding the fuel debris and the radiation dose was investigated. This is because the water level surrounding the fuel debris is thought to have an impact on radiation dose during accidents as it affects both the reactivity and shielding of radiation. A combination of space-dependent kinetic analysis and radiation transport analysis was carried out in order to consider the special characteristics of fuel debris systems in water. Instead of traditional point-kinetics analysis, we used the Multi-region Integral Kinetic (MIK) code, which is a unique method based on Monte Carlo neutron transport calculations. The radiation transport calculation code Particle and Heavy Ion Transport Code System (PHITS) was used as well. The analyses revealed that the dose caused by criticality accidents may be the largest in systems in which part of the fuel debris is exposed to the air.