ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Feb 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
March 2026
Nuclear Technology
February 2026
Fusion Science and Technology
January 2026
Latest News
Fusion energy: Progress, partnerships, and the path to deployment
Over the past decade, fusion energy has moved decisively from scientific aspiration toward a credible pathway to a new energy technology. Thanks to long-term federal support, we have significantly advanced our fundamental understanding of plasma physics—the behavior of the superheated gases at the heart of fusion devices. This knowledge will enable the creation and control of fusion fuel under conditions required for future power plants. Our progress is exemplified by breakthroughs at the National Ignition Facility and the Joint European Torus.
Kodai Fukuda, Delgersaikhan Tuya, Jun Nishiyama, Toru Obara
Nuclear Science and Engineering | Volume 194 | Number 3 | March 2020 | Pages 181-189
Technical Paper | doi.org/10.1080/00295639.2019.1665459
Articles are hosted by Taylor and Francis Online.
Removal of fuel debris is regarded as one of the most important operations in the decommissioning of the Fukushima Daiichi nuclear power station (1F-NPS) to decrease long-term risk. To begin the operation, the consequences of possible criticality accidents must be evaluated in advance. In this work, we evaluated radiation doses during possible criticality accidents at 1F-NPS in assumptive fuel debris systems. In particular, the relationship between the water level surrounding the fuel debris and the radiation dose was investigated. This is because the water level surrounding the fuel debris is thought to have an impact on radiation dose during accidents as it affects both the reactivity and shielding of radiation. A combination of space-dependent kinetic analysis and radiation transport analysis was carried out in order to consider the special characteristics of fuel debris systems in water. Instead of traditional point-kinetics analysis, we used the Multi-region Integral Kinetic (MIK) code, which is a unique method based on Monte Carlo neutron transport calculations. The radiation transport calculation code Particle and Heavy Ion Transport Code System (PHITS) was used as well. The analyses revealed that the dose caused by criticality accidents may be the largest in systems in which part of the fuel debris is exposed to the air.