ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Jan 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
February 2026
Nuclear Technology
January 2026
Fusion Science and Technology
Latest News
The spark of the Super: Teller–Ulam and the birth of the H-bomb—rivalry, credit, and legacy at 75 years
In early 1951, Los Alamos scientists Edward Teller and Stanislaw Ulam devised a breakthrough that would lead to the hydrogen bomb [1]. Their design gave the United States an initial advantage in the Cold War, though comparable progress was soon achieved independently in the Soviet Union and the United Kingdom.
Kodai Fukuda, Delgersaikhan Tuya, Jun Nishiyama, Toru Obara
Nuclear Science and Engineering | Volume 194 | Number 3 | March 2020 | Pages 181-189
Technical Paper | doi.org/10.1080/00295639.2019.1665459
Articles are hosted by Taylor and Francis Online.
Removal of fuel debris is regarded as one of the most important operations in the decommissioning of the Fukushima Daiichi nuclear power station (1F-NPS) to decrease long-term risk. To begin the operation, the consequences of possible criticality accidents must be evaluated in advance. In this work, we evaluated radiation doses during possible criticality accidents at 1F-NPS in assumptive fuel debris systems. In particular, the relationship between the water level surrounding the fuel debris and the radiation dose was investigated. This is because the water level surrounding the fuel debris is thought to have an impact on radiation dose during accidents as it affects both the reactivity and shielding of radiation. A combination of space-dependent kinetic analysis and radiation transport analysis was carried out in order to consider the special characteristics of fuel debris systems in water. Instead of traditional point-kinetics analysis, we used the Multi-region Integral Kinetic (MIK) code, which is a unique method based on Monte Carlo neutron transport calculations. The radiation transport calculation code Particle and Heavy Ion Transport Code System (PHITS) was used as well. The analyses revealed that the dose caused by criticality accidents may be the largest in systems in which part of the fuel debris is exposed to the air.