ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Aerospace Nuclear Science & Technology
Organized to promote the advancement of knowledge in the use of nuclear science and technologies in the aerospace application. Specialized nuclear-based technologies and applications are needed to advance the state-of-the-art in aerospace design, engineering and operations to explore planetary bodies in our solar system and beyond, plus enhance the safety of air travel, especially high speed air travel. Areas of interest will include but are not limited to the creation of nuclear-based power and propulsion systems, multifunctional materials to protect humans and electronic components from atmospheric, space, and nuclear power system radiation, human factor strategies for the safety and reliable operation of nuclear power and propulsion plants by non-specialized personnel and more.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
April 2025
Fusion Science and Technology
Latest News
First astatine-labeled compound shipped in the U.S.
The Department of Energy’s National Isotope Development Center (NIDC) on March 31 announced the successful long-distance shipment in the United States of a biologically active compound labeled with the medical radioisotope astatine-211 (At-211). Because previous shipments have included only the “bare” isotope, the NIDC has described the development as “unleashing medical innovation.”
Michael Y. Hua, Braden Goddard, Cody Lloyd, Evan C. Leppink, Sara A. Abraham, Jordan D. Noey, Shaun D. Clarke, Sara A. Pozzi
Nuclear Science and Engineering | Volume 194 | Number 2 | February 2020 | Pages 154-162
Technical Paper | doi.org/10.1080/00295639.2019.1654329
Articles are hosted by Taylor and Francis Online.
In this work, an epithermal neutron multiplicity counter (ENMC) and an organic scintillator multiplicity counter (OSMC) are compared in the assay of 237Np, a potentially weapons-usable isotope, using active neutron multiplicity counting. In active neutron multiplicity counting, the neutron doubles and triples multiplicity rates are used to analytically calculate sample mass. To distinguish the masses of two different samples, the measured triples and doubles rates of each sample must be separated by 1σ. The time it takes each system to separate the measured triples multiplicity rates was compared using 20 metal samples of 237Np with masses logarithmically distributed between 10 and 1000 g. The results show that the OSMC can distinguish the smallest masses (10.0 and 12.7 g) beyond 1σ in 20 min and that the ENMC requires more than 400 times the measurement time to obtain the same precision. Similarly, the OSMC is at least 4.5 times faster than the ENMC in separating the doubles multiplicity rates.