ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Isotopes & Radiation
Members are devoted to applying nuclear science and engineering technologies involving isotopes, radiation applications, and associated equipment in scientific research, development, and industrial processes. Their interests lie primarily in education, industrial uses, biology, medicine, and health physics. Division committees include Analytical Applications of Isotopes and Radiation, Biology and Medicine, Radiation Applications, Radiation Sources and Detection, and Thermal Power Sources.
Meeting Spotlight
2024 ANS Winter Conference and Expo
November 17–21, 2024
Orlando, FL|Renaissance Orlando at SeaWorld
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Sep 2024
Jan 2024
Latest Journal Issues
Nuclear Science and Engineering
October 2024
Nuclear Technology
Fusion Science and Technology
Latest News
Don’t get boxed in: Entergy CNO Kimberly Cook-Nelson shares her journey
Kimberly Cook-Nelson
For Kimberly Cook-Nelson, the path to the nuclear industry started with a couple of refrigerator boxes and cellophane paper. Her sixth-grade science project was inspired by her father, who worked at Seabrook power station in New Hampshire as a nuclear operator.
“I had two big refrigerator boxes I taped together. I cut the ‘primary operating system’ and the ‘secondary system’ out of them. Then I used different colored cellophane paper to show the pressurized water system versus the steam versus the cold cooling water,” Cook-Nelson said. “My dad got me those little replica pellets that I could pass out to people as they were going by at my science fair.”
Michael Y. Hua, Braden Goddard, Cody Lloyd, Evan C. Leppink, Sara A. Abraham, Jordan D. Noey, Shaun D. Clarke, Sara A. Pozzi
Nuclear Science and Engineering | Volume 194 | Number 2 | February 2020 | Pages 154-162
Technical Paper | doi.org/10.1080/00295639.2019.1654329
Articles are hosted by Taylor and Francis Online.
In this work, an epithermal neutron multiplicity counter (ENMC) and an organic scintillator multiplicity counter (OSMC) are compared in the assay of 237Np, a potentially weapons-usable isotope, using active neutron multiplicity counting. In active neutron multiplicity counting, the neutron doubles and triples multiplicity rates are used to analytically calculate sample mass. To distinguish the masses of two different samples, the measured triples and doubles rates of each sample must be separated by 1σ. The time it takes each system to separate the measured triples multiplicity rates was compared using 20 metal samples of 237Np with masses logarithmically distributed between 10 and 1000 g. The results show that the OSMC can distinguish the smallest masses (10.0 and 12.7 g) beyond 1σ in 20 min and that the ENMC requires more than 400 times the measurement time to obtain the same precision. Similarly, the OSMC is at least 4.5 times faster than the ENMC in separating the doubles multiplicity rates.