ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Human Factors, Instrumentation & Controls
Improving task performance, system reliability, system and personnel safety, efficiency, and effectiveness are the division's main objectives. Its major areas of interest include task design, procedures, training, instrument and control layout and placement, stress control, anthropometrics, psychological input, and motivation.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2021)
February 9–11, 2021
Virtual Meeting
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jan 2021
Jul 2020
Latest Journal Issues
Nuclear Science and Engineering
February 2021
Nuclear Technology
January 2021
Fusion Science and Technology
November 2020
Latest News
Former NRC chairs issue vaccine timeline recommendation to CDC
Five former chairmen of the U.S. Nuclear Regulatory Commission—Stephen Burns, Allison Macfarlane, Nils Diaz, Richard Meserve, and Dale Klein—signed a letter to José Romero, Arkansas health secretary and chair of the Centers for Disease Control and Prevention (CDC) immunization advisory committee, requesting that the advisory committee update its recommendation for COVID-19 vaccine allocation guidance for the energy workforce (including nuclear energy workers).
Currently, the CDC has four phases for the COVID-19 vaccine rollout. Those phases are numbered:
Michael Y. Hua, Braden Goddard, Cody Lloyd, Evan C. Leppink, Sara A. Abraham, Jordan D. Noey, Shaun D. Clarke, Sara A. Pozzi
Nuclear Science and Engineering | Volume 194 | Number 2 | February 2020 | Pages 154-162
Technical Paper | dx.doi.org/10.1080/00295639.2019.1654329
Articles are hosted by Taylor and Francis Online.
In this work, an epithermal neutron multiplicity counter (ENMC) and an organic scintillator multiplicity counter (OSMC) are compared in the assay of 237Np, a potentially weapons-usable isotope, using active neutron multiplicity counting. In active neutron multiplicity counting, the neutron doubles and triples multiplicity rates are used to analytically calculate sample mass. To distinguish the masses of two different samples, the measured triples and doubles rates of each sample must be separated by 1σ. The time it takes each system to separate the measured triples multiplicity rates was compared using 20 metal samples of 237Np with masses logarithmically distributed between 10 and 1000 g. The results show that the OSMC can distinguish the smallest masses (10.0 and 12.7 g) beyond 1σ in 20 min and that the ENMC requires more than 400 times the measurement time to obtain the same precision. Similarly, the OSMC is at least 4.5 times faster than the ENMC in separating the doubles multiplicity rates.