ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Isotopes & Radiation
Members are devoted to applying nuclear science and engineering technologies involving isotopes, radiation applications, and associated equipment in scientific research, development, and industrial processes. Their interests lie primarily in education, industrial uses, biology, medicine, and health physics. Division committees include Analytical Applications of Isotopes and Radiation, Biology and Medicine, Radiation Applications, Radiation Sources and Detection, and Thermal Power Sources.
Meeting Spotlight
2025 ANS Annual Conference
June 15–18, 2025
Chicago, IL|Chicago Marriott Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
May 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
July 2025
Nuclear Technology
June 2025
Fusion Science and Technology
Latest News
BREAKING NEWS: Trump issues executive orders to overhaul nuclear industry
The Trump administration issued four executive orders today aimed at boosting domestic nuclear deployment ahead of significant growth in projected energy demand in the coming decades.
During a live signing in the Oval Office, President Donald Trump called nuclear “a hot industry,” adding, “It’s a brilliant industry. [But] you’ve got to do it right. It’s become very safe and environmental.”
Xuelong Fu, Jie Tao, Dunwen Zuo
Nuclear Science and Engineering | Volume 194 | Number 1 | January 2020 | Pages 69-83
Technical Paper | doi.org/10.1080/00295639.2019.1654328
Articles are hosted by Taylor and Francis Online.
B4C/CF/PI/AA6061 hybrid composite laminates (BCPAs) with different configurations were fabricated using a hot molding process and then were irradiated by a 60Co gamma ray with various doses (250, 500, 750, and 1000 kGy) under ambient conditions. The effects of gamma irradiation on the morphological, physical, and thermal properties of the BCPAs were evaluated correspondingly. It was shown that the specimens maintained good interfacial adhesion even after gamma irradiation up to 1000 kGy and that no obvious delamination, swelling, and surface irradiation damage could be observed. Fourier transform infrared spectroscopy of the BCPAs after gamma irradiation indicated no obvious discrepancy when compared with that of nonirradiated specimens. The specimens still maintained good thermal stability with the experimental temperature up to 400°C. When the specimens were gamma irradiated with the dose of 750 kGy, the thermal stability of the BCPAs was optimal. Polyimide resin under gamma irradiation was inclined to form free radicals close to each other and underwent radiation decomposition, a chain scission and cross-linking reaction, and a secondary cross-linking reaction. By analyzing the C-C bond, C-O bond, and C = O bond in the C1s spectrum, the relative intensity of the C = O bond decreased with the irradiation dose; moreover, gamma irradiation caused the decomposition of a certain amount of the oxygen functional group C = O.