ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Accelerator Applications
The division was organized to promote the advancement of knowledge of the use of particle accelerator technologies for nuclear and other applications. It focuses on production of neutrons and other particles, utilization of these particles for scientific or industrial purposes, such as the production or destruction of radionuclides significant to energy, medicine, defense or other endeavors, as well as imaging and diagnostics.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
May 2025
Fusion Science and Technology
Latest News
Sam Altman steps down as Oklo board chair
Advanced nuclear company Oklo Inc. has new leadership for its board of directors as billionaire Sam Altman is stepping down from the position he has held since 2015. The move is meant to open new partnership opportunities with OpenAI, where Altman is CEO, and other artificial intelligence companies.
Xuelong Fu, Jie Tao, Dunwen Zuo
Nuclear Science and Engineering | Volume 194 | Number 1 | January 2020 | Pages 69-83
Technical Paper | doi.org/10.1080/00295639.2019.1654328
Articles are hosted by Taylor and Francis Online.
B4C/CF/PI/AA6061 hybrid composite laminates (BCPAs) with different configurations were fabricated using a hot molding process and then were irradiated by a 60Co gamma ray with various doses (250, 500, 750, and 1000 kGy) under ambient conditions. The effects of gamma irradiation on the morphological, physical, and thermal properties of the BCPAs were evaluated correspondingly. It was shown that the specimens maintained good interfacial adhesion even after gamma irradiation up to 1000 kGy and that no obvious delamination, swelling, and surface irradiation damage could be observed. Fourier transform infrared spectroscopy of the BCPAs after gamma irradiation indicated no obvious discrepancy when compared with that of nonirradiated specimens. The specimens still maintained good thermal stability with the experimental temperature up to 400°C. When the specimens were gamma irradiated with the dose of 750 kGy, the thermal stability of the BCPAs was optimal. Polyimide resin under gamma irradiation was inclined to form free radicals close to each other and underwent radiation decomposition, a chain scission and cross-linking reaction, and a secondary cross-linking reaction. By analyzing the C-C bond, C-O bond, and C = O bond in the C1s spectrum, the relative intensity of the C = O bond decreased with the irradiation dose; moreover, gamma irradiation caused the decomposition of a certain amount of the oxygen functional group C = O.