ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Young Members Group
The Young Members Group works to encourage and enable all young professional members to be actively involved in the efforts and endeavors of the Society at all levels (Professional Divisions, ANS Governance, Local Sections, etc.) as they transition from the role of a student to the role of a professional. It sponsors non-technical workshops and meetings that provide professional development and networking opportunities for young professionals, collaborates with other Divisions and Groups in developing technical and non-technical content for topical and national meetings, encourages its members to participate in the activities of the Groups and Divisions that are closely related to their professional interests as well as in their local sections, introduces young members to the rules and governance structure of the Society, and nominates young professionals for awards and leadership opportunities available to members.
Meeting Spotlight
2025 ANS Annual Conference
June 15–18, 2025
Chicago, IL|Chicago Marriott Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
May 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
Fusion Science and Technology
Latest News
NRC v. Texas: Supreme Court weighs challenge to NRC authority in spent fuel storage case
The State of Texas has not one but two ongoing federal court challenges to the Nuclear Regulatory Commission that could, if successful, turn decades of NRC regulations, precedent, and case law on its head.
Michael Y. Hua, Jesson D. Hutchinson, George E. McKenzie, Tony H. Shin, Shaun D. Clarke, Sara A. Pozzi
Nuclear Science and Engineering | Volume 194 | Number 1 | January 2020 | Pages 56-68
Technical Paper | doi.org/10.1080/00295639.2019.1654327
Articles are hosted by Taylor and Francis Online.
Rossi-alpha measurements of fissionable assemblies are used to estimate the prompt neutron decay constant α. Reactivity can be inferred from α if the values of the neutron generation time and effective delayed neutron fraction are assumed. If multiple measurements are performed on an assembly near delayed critical, one can determine α at delayed critical and directly infer reactivity (without needing to assume values for the neutron generation time or effective delayed neutron fraction). Previous works have demonstrated that two-exponential fits for Rossi-alpha measurements of reflected assemblies have better fit metrics than those of one-exponential fits; however, the two-exponential probability density function that is needed to obtain α from the fit parameters has not been derived. This paper derives the two-exponential fit based on a two-region point kinetics model for Rossi-alpha measurements of reflected assemblies, a generalization of the current, one-region model (one-exponential fit). The new model is validated for shielded assemblies, a special case of reflected assemblies where the reflector-to-core leakage is negligibly small. The validation is performed using shielded, fissionable assemblies (highly enriched uranium with keff ≈ 0.95 and weapons-grade plutonium with keff > 0.77). The results show that the two-exponential model can (1) predict the constant α within two standard deviations, and (2) deconvolve α and the time a neutron spends in the reflector region, neither of which is possible with the one-exponential model.