ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Aerospace Nuclear Science & Technology
Organized to promote the advancement of knowledge in the use of nuclear science and technologies in the aerospace application. Specialized nuclear-based technologies and applications are needed to advance the state-of-the-art in aerospace design, engineering and operations to explore planetary bodies in our solar system and beyond, plus enhance the safety of air travel, especially high speed air travel. Areas of interest will include but are not limited to the creation of nuclear-based power and propulsion systems, multifunctional materials to protect humans and electronic components from atmospheric, space, and nuclear power system radiation, human factor strategies for the safety and reliable operation of nuclear power and propulsion plants by non-specialized personnel and more.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
May 2025
Fusion Science and Technology
Latest News
Sam Altman steps down as Oklo board chair
Advanced nuclear company Oklo Inc. has new leadership for its board of directors as billionaire Sam Altman is stepping down from the position he has held since 2015. The move is meant to open new partnership opportunities with OpenAI, where Altman is CEO, and other artificial intelligence companies.
Michael Y. Hua, Jesson D. Hutchinson, George E. McKenzie, Tony H. Shin, Shaun D. Clarke, Sara A. Pozzi
Nuclear Science and Engineering | Volume 194 | Number 1 | January 2020 | Pages 56-68
Technical Paper | doi.org/10.1080/00295639.2019.1654327
Articles are hosted by Taylor and Francis Online.
Rossi-alpha measurements of fissionable assemblies are used to estimate the prompt neutron decay constant α. Reactivity can be inferred from α if the values of the neutron generation time and effective delayed neutron fraction are assumed. If multiple measurements are performed on an assembly near delayed critical, one can determine α at delayed critical and directly infer reactivity (without needing to assume values for the neutron generation time or effective delayed neutron fraction). Previous works have demonstrated that two-exponential fits for Rossi-alpha measurements of reflected assemblies have better fit metrics than those of one-exponential fits; however, the two-exponential probability density function that is needed to obtain α from the fit parameters has not been derived. This paper derives the two-exponential fit based on a two-region point kinetics model for Rossi-alpha measurements of reflected assemblies, a generalization of the current, one-region model (one-exponential fit). The new model is validated for shielded assemblies, a special case of reflected assemblies where the reflector-to-core leakage is negligibly small. The validation is performed using shielded, fissionable assemblies (highly enriched uranium with keff ≈ 0.95 and weapons-grade plutonium with keff > 0.77). The results show that the two-exponential model can (1) predict the constant α within two standard deviations, and (2) deconvolve α and the time a neutron spends in the reflector region, neither of which is possible with the one-exponential model.