ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Aug 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
September 2025
Nuclear Technology
Fusion Science and Technology
August 2025
Latest News
House E&C members question the DOE
As work progresses on the Department of Energy’s Nuclear Reactor Pilot Program, which will progress through DOE authorization rather than Nuclear Regulatory Commission licensing, three members of the House Committee on Energy and Commerce have sent a critical letter to Energy Secretary Chris Wright.
The letter demands “information about the DOE and its employees’ dealings with the NRC and its staff” and expresses concern that DOE staff has “broken the firewall” between the departments.
Inhyung Kim, HyeonTae Kim, Yonghee Kim
Nuclear Science and Engineering | Volume 194 | Number 1 | January 2020 | Pages 14-31
Technical Paper | doi.org/10.1080/00295639.2019.1654815
Articles are hosted by Taylor and Francis Online.
This paper presents a systematic way to truncate the high-fidelity Monte Carlo (MC) solution to reduce the computational cost without compromising the essential reliability of the solution. Based on the fine-mesh finite difference (FMFD) acceleration for the MC analysis, the deterministic truncation of the Monte Carlo (DTMC) solution method is developed and investigated for a systematic approximation to the MC solution of the reactor eigenvalue problem. This deterministic solution is used for the acceleration of the MC simulation as well as the solution prediction itself. The concept, motivations, and challenges of the DTMC method are described in detail, and theoretical backgrounds of the FMFD method are discussed. In addition, an unbiased ratio estimator for more accurate FMFD parameter generation and a modified particle ramp-up method for the determination of optimal generation size in the MC simulation are also introduced and explained. Both the C5G7 benchmark and a small modular reactor (SMR) core are analyzed to characterize the numerical performance of the DTMC method in this work. Convergence behavior of the fission source distribution is examined, and reactor parameters such as the multiplication factor and three-dimensional pin power distribution are estimated and compared to the reference solution. The stochastic features of the DTMC solutions are also discussed in terms of the apparent and real standard deviations. For the pin power distribution, the root-mean-square error and relative error for the reactor core are also evaluated and compared. The computing time and figure of merit are compared for each method.