ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Jan 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
February 2026
Nuclear Technology
January 2026
Fusion Science and Technology
Latest News
The spark of the Super: Teller–Ulam and the birth of the H-bomb—rivalry, credit, and legacy at 75 years
In early 1951, Los Alamos scientists Edward Teller and Stanislaw Ulam devised a breakthrough that would lead to the hydrogen bomb [1]. Their design gave the United States an initial advantage in the Cold War, though comparable progress was soon achieved independently in the Soviet Union and the United Kingdom.
Jaeha Kim, Yonghee Kim
Nuclear Science and Engineering | Volume 194 | Number 1 | January 2020 | Pages 1-13
Technical Paper | doi.org/10.1080/00295639.2019.1642016
Articles are hosted by Taylor and Francis Online.
This paper presents the methodology and performance of the Hybrid Coarse-Mesh Finite Difference (HCMFD) algorithm for transient pinwise analyses of three-dimensional (3-D) pressurized water reactor (PWR) problems. The time-dependent neutron diffusion equations and their applications in two steps of the HCMFD algorithm, i.e., local and global iterations, are introduced in detail. Taking into account the characteristics of the local-global nonlinear HCMFD iterations, an optimization strategy to minimize the computing time of the transient HCMFD calculation is established by focusing on the balance between the number of local and global calculations. Based on the optimization strategy, the actual computational performance of the transient HCMFD algorithm, in view of both computing time and accuracy, is evaluated for the core of a big-sized conventional PWR in this work. To demonstrate the effectiveness of the optimized iteration strategy, various slow and fast transients including a rod ejection transient are simulated by the transient HCMFD algorithm. It is clearly shown that a 3-D pin-resolved whole-core transient solution for a big PWR can be obtained in a reasonably short computing time by the transient 3-D HCMFD algorithm.