ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jul 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
September 2025
Nuclear Technology
August 2025
Fusion Science and Technology
Latest News
Geoffrey Rothwell: My story—ANS member since 1986
When I was 10, in October 1963, my family moved to Richland, Wash., so that my father could work for Vitro-Hanford Engineering Services, later for Bechtel, on the design of the Fast Flux Test Facility. I was a “new” kid throughout my excellent education in the Richland School District. It was the mid-1960s, and I wanted to be a rocket scientist or aerospace engineer. I took all the math and science that Richland High School (RHS) had to offer. What struck me during our tour of Hanford’s N-reactor with my physics class was the loudness of the steam turbine room compared to the hydro turbine rooms in the dams along the Columbia River. I am now establishing a residence on Columbia Point Drive in Richland.
Jeremy A. Roberts, Leidong Xu, Rabab Elzohery, Mohammad Abdo
Nuclear Science and Engineering | Volume 193 | Number 12 | December 2019 | Pages 1371-1378
Technical Paper | doi.org/10.1080/00295639.2019.1634928
Articles are hosted by Taylor and Francis Online.
An algorithm based on dynamic mode decomposition (DMD) for acceleration of the power method (PM) is presented. The PM is a simple technique for determining the dominant eigenmode of an operator A, and variants of the PM are widely used in reactor analysis. DMD is an algorithm for decomposing a time series of spatially dependent data and producing an explicit-in-time reconstruction for that data. By viewing successive PM iterates as snapshots of a time-varying system tending toward a steady state, DMD can be used to predict that steady state using (sometimes surprisingly small) iterates. The process of generating snapshots with the PM and extrapolating forward with DMD can be repeated. The resulting restarted, DMD-accelerated PM [or DMD-PM()] was applied to the two-dimensional International Atomic Energy Agency diffusion benchmark and compared to the unaccelerated PM and the Arnoldi method. Results indicate that DMD-PM() can reduce the number of power iterations required by a factor of approximately 5. However, the Arnoldi method always outperformed DMD-PM() for an equivalent number of matrix-vector products Av. In other words, DMD-PM() cannot compete with leading eigensolvers if one is not limited to snapshots produced by the PM. Contrarily, DMD-PM() can be readily applied as a postprocess to existing PM applications for which the Arnoldi method and similar methods are not directly applicable. A slight variation of the method was also found to produce reasonable approximations to the first and second harmonics without substantially affecting convergence of the dominant mode.