ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Aug 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
September 2025
Nuclear Technology
Fusion Science and Technology
August 2025
Latest News
Nuclear Dirigo
On April 22, 1959, Rear Admiral George J. King, superintendent of the Maine Maritime Academy, announced that following the completion of the 1960 training cruise, cadets would begin the study of nuclear engineering. Courses at that time included radiation physics, reactor control and instrumentation, reactor theory and engineering, thermodynamics, shielding, core design, reactor maintenance, and nuclear aspects.
Jeremy A. Roberts, Leidong Xu, Rabab Elzohery, Mohammad Abdo
Nuclear Science and Engineering | Volume 193 | Number 12 | December 2019 | Pages 1371-1378
Technical Paper | doi.org/10.1080/00295639.2019.1634928
Articles are hosted by Taylor and Francis Online.
An algorithm based on dynamic mode decomposition (DMD) for acceleration of the power method (PM) is presented. The PM is a simple technique for determining the dominant eigenmode of an operator A, and variants of the PM are widely used in reactor analysis. DMD is an algorithm for decomposing a time series of spatially dependent data and producing an explicit-in-time reconstruction for that data. By viewing successive PM iterates as snapshots of a time-varying system tending toward a steady state, DMD can be used to predict that steady state using (sometimes surprisingly small) iterates. The process of generating snapshots with the PM and extrapolating forward with DMD can be repeated. The resulting restarted, DMD-accelerated PM [or DMD-PM()] was applied to the two-dimensional International Atomic Energy Agency diffusion benchmark and compared to the unaccelerated PM and the Arnoldi method. Results indicate that DMD-PM() can reduce the number of power iterations required by a factor of approximately 5. However, the Arnoldi method always outperformed DMD-PM() for an equivalent number of matrix-vector products Av. In other words, DMD-PM() cannot compete with leading eigensolvers if one is not limited to snapshots produced by the PM. Contrarily, DMD-PM() can be readily applied as a postprocess to existing PM applications for which the Arnoldi method and similar methods are not directly applicable. A slight variation of the method was also found to produce reasonable approximations to the first and second harmonics without substantially affecting convergence of the dominant mode.