ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Decommissioning & Environmental Sciences
The mission of the Decommissioning and Environmental Sciences (DES) Division is to promote the development and use of those skills and technologies associated with the use of nuclear energy and the optimal management and stewardship of the environment, sustainable development, decommissioning, remediation, reutilization, and long-term surveillance and maintenance of nuclear-related installations, and sites. The target audience for this effort is the membership of the Division, the Society, and the public at large.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2024
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
December 2024
Nuclear Technology
Fusion Science and Technology
November 2024
Latest News
Finland’s Onkalo repository licensing gets stuck again
Finland’s regulatory authority, the Radiation and Nuclear Safety Authority (STUK), announced that it was further delaying issuing a statement on the safety case for the Onkalo spent nuclear fuel repository until 2025, saying that Posiva’s license application material is not yet ready.
Dean Wang
Nuclear Science and Engineering | Volume 193 | Number 12 | December 2019 | Pages 1339-1354
Technical Paper | doi.org/10.1080/00295639.2019.1638660
Articles are hosted by Taylor and Francis Online.
The SN transport equation asymptotically tends to an equivalent diffusion equation in the limit of optically thick systems with small absorption and sources. A spatial discretization of the SN equation is of practical interest if it possesses the optically thick diffusion limit. Such a numerical scheme will yield accurate solutions for diffusive problems if the spatial mesh size is thin with respect to a diffusion length, whereas the mesh cells are thick in terms of a mean free path. Many spatial discretization methods have been developed for the SN transport equation, but only a few of them can obtain the thick diffusion limit under certain conditions. This paper presents a theoretical result that simply states that the mesh size required for a finite difference scheme to attain the diffusion limit is , where is the order of accuracy of spatial discretization, is the “diffusion” mesh size that can be many mean free paths thick, and is a small positive scaling parameter that can be defined as the ratio of a particle mean free path to a characteristic scale length of the system. Numerical results for schemes such as the Diamond Difference method, Step Characteristic method, Step Difference method, Second-Order Upwind method, and Lax-Friedrichs Weighted Essentially Non-Oscillatory method of the third order (LF-WENO3) are presented that demonstrate the validity and accuracy of our analysis.