ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Nuclear Criticality Safety
NCSD provides communication among nuclear criticality safety professionals through the development of standards, the evolution of training methods and materials, the presentation of technical data and procedures, and the creation of specialty publications. In these ways, the division furthers the exchange of technical information on nuclear criticality safety with the ultimate goal of promoting the safe handling of fissionable materials outside reactors.
Meeting Spotlight
2024 ANS Winter Conference and Expo
November 17–21, 2024
Orlando, FL|Renaissance Orlando at SeaWorld
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Oct 2024
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
November 2024
Nuclear Technology
Fusion Science and Technology
October 2024
Latest News
Westinghouse reorganization creates two new business units
Westinghouse Electric Company has announced that it will create two new global business units from its Operating Plant Services business. Effective January 1, 2025, the new units will be Long-Term Operations and Outage & Maintenance Services.
Akash Tondon, Mohinder Singh, B. S. Sandhu, Bhajan Singh
Nuclear Science and Engineering | Volume 193 | Number 11 | November 2019 | Pages 1265-1275
Technical Paper | doi.org/10.1080/00295639.2019.1614802
Articles are hosted by Taylor and Francis Online.
The voxel, defined as the volume of the intersection between incident (primary) and scattered beams, plays an important role in the localization of defects in samples having several interests. In this work, the gamma rays emitted from a 137Cs radioactive source (having the strength of 222 GBq) are scattered from various regions of a wood sample. The scattered gamma flux is detected by an NaI(Tl) scintillation detector placed at 110 deg to the primary gamma-ray beam. Defect (decay) in the wood is simulated by drilling two collinear cylindrical flaws (having diameters of 0.8 and 1.2 cm) in the wood sample and then filling it with a mixture of sawdust and glue. Three sets of collimators with diameters of 6, 7, and 8 mm for the source and detector are used to vary the voxel size (volume). It has been found that better contrast (29.43% for a 1.2-cm defect and 16.37% for an 0.8-cm defect) is achieved for the smallest voxel (16.13 cm3) in comparison to the other two voxels (25.65 and 38.36 cm3). Further, better contrast for the smallest voxel is confirmed by comparing gray images obtained using MATLAB for all three voxel sizes at different scan positions. It has been concluded that for a given experimental setup, the accuracy of defect (decay) detection demands reduced voxel size.