ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Accelerator Applications
The division was organized to promote the advancement of knowledge of the use of particle accelerator technologies for nuclear and other applications. It focuses on production of neutrons and other particles, utilization of these particles for scientific or industrial purposes, such as the production or destruction of radionuclides significant to energy, medicine, defense or other endeavors, as well as imaging and diagnostics.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jan 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
February 2025
Nuclear Technology
Fusion Science and Technology
Latest News
A series of firsts delivers new Plant Vogtle units
Southern Nuclear was first when no one wanted to be.
The nuclear subsidiary of the century-old utility Southern Company, based in Atlanta, Ga., joined a pack of nuclear companies in the early 2000s—during what was then dubbed a “nuclear renaissance”—bullish on plans for new large nuclear facilities and adding thousands of new carbon-free megawatts to the grid.
In 2008, Southern Nuclear applied for a combined construction and operating license (COL), positioning the company to receive the first such license from the U.S. Nuclear Regulatory Commission in 2012. Also in 2008, Southern became the first U.S. company to sign an engineering, procurement, and construction contract for a Generation III+ reactor. Southern chose Westinghouse’s AP1000 pressurized water reactor, which was certified by the NRC in December 2011.
Fast forward a dozen years—which saw dozens of setbacks and hundreds of successes—and Southern Nuclear and its stakeholders celebrated the completion of Vogtle Units 3 and 4: the first new commercial nuclear power construction project completed in the U.S. in more than 30 years.
Hao Li, Ganglin Yu, Shanfang Huang, Mengfei Zhou, Guanlin Shi, Kan Wang
Nuclear Science and Engineering | Volume 193 | Number 11 | November 2019 | Pages 1186-1218
Technical Paper | doi.org/10.1080/00295639.2019.1614800
Articles are hosted by Taylor and Francis Online.
Geometric sensitivity analyses of the -eigenvalue have many applications in analyses of geometric uncertainty, calculations of differential control rod worth, and searches for critical geometry. The adjoint-weighted first-order geometric sensitivity theory is widely used and has continuously evolved with the Monte Carlo methods. However, the existing adjoint-weighted algorithm can do only uniform isotropic expansions or contractions of surfaces. The adjoint-weighted algorithm also requires computation of adjoint-weighted scattering and fission reaction rates exactly at material interfaces, which has an infinitesimal probability in reality. This paper presents an improved geometry adjoint-weighted perturbation algorithm that is incorporated into the continuous-energy Reactor Monte Carlo (RMC) code. The improvement of the adjoint-weighted algorithm is decomposed into three steps for constructing a cross-section function of geometric parameters using logical expressions, calculating the derivative of the cross-section function, and estimating the adjoint-weighted surface reaction rates. The improved algorithm can accommodate common one-parameter geometric perturbations of internal interfaces or boundary surfaces as well as those of cells as long as the perturbed cells can be described by logical expressions of spatial surface equations. The perturbation algorithm is compared with a direct difference method, the linear least-squares fitting method with central differences, for several typical geometric perturbations including translation, fixed-axis rotation, and uniform isotropic/anisotropic expansion transformations of planar, spherical, cylindrical, and conical surfaces. The differences between the two methods are not more than 3% and not more than 3 for the majority of the test examples. Even though the perturbation algorithm has higher figures of merit than the direct difference method for the majority of the test examples, there is no guarantee that the former can always be more efficient than the latter. The limitation in the efficiency of the perturbation algorithm was demonstrated by the totally reflecting light water reactor pin model.