ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Feb 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
February 2026
Nuclear Technology
Fusion Science and Technology
January 2026
Latest News
From uncertainty to vitality: The future of nuclear energy in Illinois
Nuclear is enjoying a bit of a resurgence. The momentum for reliable energy to support economic development around the country—specifically data centers and AI—remains strong, and strongly in favor of nuclear. And as feature coverage on the states in the January 2026 issue of Nuclear News made abundantly clear, many states now see nuclear as necessary to support rising electricity demand while maintaining a reliable grid and reaching decarbonization goals.
Cheol Ho Pyeon, Masao Yamanaka, Tadafumi Sano, Koichi Takamiya
Nuclear Science and Engineering | Volume 193 | Number 9 | September 2019 | Pages 1023-1032
Technical Paper | doi.org/10.1080/00295639.2019.1603014
Articles are hosted by Taylor and Francis Online.
At the Kyoto University Critical Assembly (KUCA), critical irradiation experiments on 237Np and 241Am foils are carried out in the neutron hard spectrum core. For nuclear transmutation of minor actinides, special attention is paid to determining 237Np and 241Am fission reaction rates and to 237Np capture reaction rates in the KUCA hard spectrum core. In the back-to-back (BTB) fission chamber, two nuclide foils (test: 237Np or 241Am; reference: 235U) are set closely to each other to measure the aforementioned fission reaction rates. Interestingly, the experimental 237Np and 241Am fission and capture reaction rates are attained by critical irradiation at low W reactor power for 1 h in the core and are successfully deduced through signals from the BTB fission chamber (fission) and the gamma-ray detection (capture) after the irradiation, respectively, together with MCNP calculations.